
www.manaraa.com

Portland State University
PDXScholar

Dissertations and Theses Dissertations and Theses

Winter 3-17-2014

Towards Constructing Interactive Virtual Worlds
Francis Chang
Portland State University

Let us know how access to this document benefits you.
Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

Part of the Graphics and Human Computer Interfaces Commons

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized
administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.

Recommended Citation
Chang, Francis, "Towards Constructing Interactive Virtual Worlds" (2014). Dissertations and Theses. Paper 1650.

10.15760/etd.1649

https://pdxscholar.library.pdx.edu?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F1650&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F1650&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F1650&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F1650&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F1650&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/open_access_etds/1650?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F1650&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.15760/etd.1649
mailto:pdxscholar@pdx.edu

www.manaraa.com

Towards Constructing Interactive Virtual Worlds

by

Francis Chang

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

Dissertation Committee:

Wu-chi Feng, Chair

Steve Bleiler

Nirupama Bulusu

Wu-chang Feng

Tim Sheard

Portland State University

2014

www.manaraa.com

i

ABSTRACT

Networked virtual reality environments including virtual worlds devoted to

entertainment, online socializing and remote collaboration have grown in popularity with

the rise of commercially available consumer graphics hardware and the growing ubiquity

of the Internet. These virtual worlds are typified by a persistent simulated three-

dimensional space that communicates over a computer network, where users interact with

the environment and each other through digital avatars. Development of these virtual

worlds challenges the limits of the networking infrastructure, 3D streaming graphics

techniques, and the distributed computing design of the virtual world systems that

manages the simulation. In this dissertation, we explore solutions to different aspects of

the overall problem of developing a general purpose, networked virtual environment,

focusing on the networking and software system issues. Specifically, we show how to

improve the networking infrastructure to better support the high packet-rate traffic that is

typical of virtual worlds, efficiently stream terrain data for remote rendering, and

construct a dynamically adaptive distributed systems framework suitable for virtual world

simulations.

www.manaraa.com

ii

ACKNOWLEDGEMENTS

I would like to thank my dissertation supervisor, Professor Wu-chi Feng for his

guidance and support at every stage of my progress. The amount of counselling and

support I was given was above and beyond what was required to nurture a graduate

student. I would also like to thank Professor Wu-chang Feng, who helped me begin the

path towards my doctorate.

I am also grateful to the members of my committee, Professor Bleiler, Professor

Bulusu, and Professor Sheard, for their counsel and feedback on my dissertation, and

their counsel throughout my academic career.

I would like to thank my fellow graduate students for their guidance throughout the

years, and especially their encouragement and feedback in the final weeks before my

dissertation defense.

I would like to express many thanks to my friends and coworkers at Intel for their

advice, collaboration and nurturing support throughout the years.

I am grateful to all my friends I have met in online virtual worlds for their

inspiration.

Thank-you to my friends back home who have never let me forget where I am from,

and my friends in Portland for their friendship who have made my time in graduate

school so enjoyable, especially Chris and Laxmi whose friendship I will always be

grateful for.

This dissertation is dedicated to my parents, without whose guidance, support and

teaching have made this all possible.

www.manaraa.com

iii

TABLE OF CONTENTS

Abstract .. i

Acknowledgements ... ii

List of Tables ... viii

List of Figures ... x

Chapter 1 Introduction ... 1

1.1 Research Overview .. 2

1.1.1 Network Packet Processing Optimization ... 2

1.1.2 Terrain Data Representation and Streaming ... 5

1.1.3 Distributed Computing for Virtual Worlds ... 7

1.2 Dissertation Overview .. 10

Chapter 2 Approximate Packet Classification Caching ... 11

2.1 Related Work.. 13

2.2 An Approximate Algorithm Approach .. 14

2.2.1 Dealing with Misclassification .. 16

2.3 Approximate Algorithm 1: Bloom Filters .. 19

2.3.1 Properties of the Bloom Filter ... 20

2.3.2 Dimensioning the Bloom Filter ... 22

2.3.3 Multiple Predicates .. 25

www.manaraa.com

iv

2.3.3.1 Multiple Predicates with Non-Uniform Distributions 27

2.3.3.2 Multiple Predicates Compared With Single Predicate Bloom Filters . 28

2.3.4 Bloom Filter Aging ... 31

2.3.4.1 Bloom Filter Aging: Cold Cache Approach .. 32

2.3.4.2 Bloom Filter Aging: Double-Buffering ... 33

2.4 Approximate Algorithm 2: Digest Caches ... 35

2.4.1 Dimensioning the Digest Cache .. 36

2.4.2 Theoretical Comparison of Bloom Filters with Digest Caches............... 37

2.4.3 A Specific Example of a Digest Cache ... 39

2.4.4 Exact Classification with Digest Caches ... 41

2.5 Performance Evaluation of Approximate Caching Strategies 43

2.5.1 Bloom Filter Cache Evaluation ... 45

2.5.1.1 Bloom Filter Cold Caching Evaluation ... 46

2.5.1.2 Bloom Filter Double-Buffering Cache Evaluation 47

2.5.2 Digest Cache Performance Evaluation .. 50

2.5.2.1 Digest Cache Results ... 52

2.5.3 Hardware Specific Implementation ... 55

2.6 Conclusion .. 57

2.7 Future Work ... 58

www.manaraa.com

v

Chapter 3 Terrain Data Representation and Streaming ... 60

3.1 Related Work.. 63

3.2 Framework for Experimental Evaluation ... 66

3.2.1 Underlying Network Assumptions .. 67

3.2.2 Simulation Dataset .. 68

3.3 Reference Algorithms .. 70

3.3.1 Non-Streaming Reference Algorithms .. 70

3.4 Exact Representation Terrain Streaming Algorithms .. 74

3.5 Approximate Terrain Representation Streaming Algorithms 79

3.5.1 Simple Approximate Terrain Representation Approach 82

3.5.2 Prioritize Streaming for Approximate Terrain Representation 87

3.5.3 Understanding the Characteristics of JPEG Representation 93

3.6 Conclusion .. 96

3.7 Future Work ... 98

Chapter 4 Distributed Simulation Architecture for Virtual Worlds......................... 99

4.1 Related Work.. 101

4.2 Approach to Distributed Systems for Virtual World 104

4.2.1 The kd-tree Structure for Virtual World Partitioning............................ 107

4.3 XPU Load Balancing ... 108

www.manaraa.com

vi

4.4 XPU Simulation Workload .. 109

4.4.1 Simulation Workload Variations ... 111

4.5 Performance Metrics .. 114

4.5.1 Number of Servers Metric ... 114

4.5.2 Server Crossing Metric.. 114

4.5.3 Spatial Locality Score ... 115

4.5.4 Overload Score .. 116

4.6 XPU Sim Allocation Algorithms ... 117

4.6.1 kd_split XPU Algorithm ... 118

4.6.2 kd_split_mincross XPU Algorithm ... 121

4.6.3 centersplit_mincross XPU Algorithm ... 123

4.6.4 clustersplit and clustersplit_mincross XPU Algorithms 126

4.6.5 bintree XPU Algorithm ... 129

4.6.6 Choosing the XPU Merge Constant .. 133

4.7 Results of Fixed Square Grid Spatial Subdivision ... 134

4.8 Conclusion .. 136

4.9 Future Work ... 137

Chapter 5 Conclusion and Future Work .. 140

5.1 Summary .. 140

www.manaraa.com

vii

5.2 Future Directions .. 142

Bibliography ... 145

Appendix A Virtual World Simulation Workload Summary 158

Appendix B Extended Performance Results for Virtual World Simulation 165

Appendix C Fixed Grid Virtual World Simulation Workload Summary 183

www.manaraa.com

viii

LIST OF TABLES

Table 1: Bell Labs research trace .. 43

Table 2: OGI OC-3 trace... 43

Table 3: The results of a perfect cache ... 45

Table 4: IXP implementation overhead for Bloom filter caches 56

Table 5: Sizes (in bytes) of JPEG compressed terrain tiles. ... 93

Table 6: Compressed representation of terrain, as well as the PSNR comparison with the

original, raw data. JPEG-compressed representations use a quality level of 100. 94

Table 7: kd_split performance. The number of servers (λ), server crossings (δ) and spatial

locality score (ω) reported here are averages over the 100000 timestep workload. 119

Table 8: kd_split_mincross performance. The number of servers (λ), server crossings (δ)

and spatial locality score (ω) reported here are averages over the 100000 timestep

workload. ... 122

Table 9: centersplit_mincross performance. The number of servers (λ), server crossings

(δ) and spatial locality score (ω) reported here are averages over the 100000 timestep

workload. ... 124

Table 10: centersplit_unbalanced_mincross performance. The number of servers (λ),

server crossings (δ) and spatial locality score (ω) reported here are averages over the

100000 timestep workload. .. 125

Table 11: cluster_split performance. The number of servers (λ), server crossings (δ) and

spatial locality score (ω) reported here are averages over the 100000 timestep

workload. ... 127

www.manaraa.com

ix

Table 12: clustersplit_mincross performance. The number of servers (λ), server crossings

(δ) and spatial locality score (ω) reported here are averages over the 100000 timestep

workload. ... 128

Table 13: bintree performance. The number of servers (λ), server crossings (δ) and spatial

locality score (ω) reported here are averages over the 100000 timestep workload. 132

www.manaraa.com

x

LIST OF FIGURES

Figure 1: Screenshot of a terrain rendering ... 5

Figure 2: Underlying rendered geometry .. 5

Figure 3: Screenshot from popular massively-multiplayer online game, World of

Warcraft [gamersbin] ... 8

Figure 4: Overhead view of a virtual world using regular grid spatial subdivision. Circles

represent entities/players. .. 9

Figure 5: Overhead view of a virtual world using dynamic spatial subdivision. Each

rectangular region is managed by a separate server .. 9

Figure 6: An example: A Bloom filter with N=5 bins and L=3 hash levels. Suppose we

wish to insert an element, e. ... 20

Figure 7: The maximum number of elements that can be stored by a 512KB cache 23

Figure 8: The trade-off between the misclassification probability, p, and the maximum

number of elements, k, using optimum values of L. .. 24

Figure 9: The relationship between the amount of memory, M, and the maximum number

of elements (flows), k that can be stored while maintaining a given misclassification

probability .. 25

Figure 10: An example: A modified Bloom filter with 5 buckets and 2 hash levels,

supporting a router with 8 interfaces. Suppose we wish to cache a flow e that gets

routed to interface number 2. ... 26

Figure 11: As before, suppose flow e is to be forwarded to interface 2. Now, let us

suppose that H’(e) = 3. So j = (i+H’(e)) mod I=(2+3) mod 8 = 5. 28

www.manaraa.com

xi

Figure 12: Comparison of storage capacity of various multi-predicate Bloom filters 30

Figure 13: Pseudocode for double-buffer aging algorithm for Bloom filters 34

Figure 14: Maximum number of flows that can be addressed in a 4-way set associative

digest cache, with different misclassification probabilities, p 38

Figure 15: Comparison of storage capacity of various caching schemes. The Bloom

filter cache assumes a misidentification probability of one in a billion, which under

optimal conditions is modeled by a Bloom filter with 30 hash functions. 38

Figure 16: An overview of 64KB 4-way set associative digest cache, with a

misclassification probability of 1 in a billion. This cache services a router with 16

interfaces. ... 39

Figure 17: A multi-level digest-accelerated exact cache. The Digest cache allows filtering

potential hits quickly, using a small amount of faster memory. 42

Figure 18: Number of concurrent flows in test data sets .. 44

Figure 19: Comparing cold cache and double-buffered bloom caches using 4 KB of

memory (Bell dataset) .. 46

Figure 20: Cache Misses using a perfect cache (Bell dataset) .. 47

Figure 21: Cache hit rates as a function of memory, M ... 48

Figure 22: Average cache misses as a function of memory, M (aggregate over 100ms

timescales) ... 49

Figure 23: Variance of cache misses as a function of memory, M (aggregate over 100ms

timescales) ... 50

Figure 24: Hit Rates for digest caches, as a function of memory for various set

associativity, assuming a misclassification rate of 1 in a billion 51

www.manaraa.com

xii

Figure 25: Cache hit rates as a function of memory, M . The Bell trace is on the left, the

OGI trace is on the right .. 52

Figure 26: Variance of cache misses as a function of memory, M (aggregate over 100ms

time scales). The Bell trace is on the left, the OGI trace is on the right 53

Figure 27: Cache miss rates aggregate over 1 second intervals, using a 2600 byte 4-way

set associative digest cache. The Bell trace gave a 95.9% hit rate, while the OGI

trace achieved a 97.6% hit rate. ... 54

Figure 28: Screenshot of a terrain fly-through .. 61

Figure 29: Underlying rendered geometry .. 61

Figure 30: USGS dataset of the Grand Canyon. The height field information is on the left

(lighter shades represent higher altitude) and lighting information is on the right. .. 68

Figure 31: The three flythrough test scenarios. The arrows represent the path and

direction of the viewer over the terrain. ... 69

Figure 32: Visual representation of input terrain data (left) down-sampled to a 64x64

image (right). ... 70

Figure 33: Simulation results for non-streaming algorithms. Frame number is on the X

axis. The rendering quality of the frame (PSNR in dB) is on the Y axis. Higher

values are better. .. 72

Figure 34: Example showing the degradation in a 35.0dB PSNR rendering. Top Left:

Image captured with full-detail terrain representation. Top Right: Reconstruction

using compressed approximate terrain representation. Bottom: Pixel difference of

both images. ... 74

www.manaraa.com

xiii

Figure 35: The recursive splitting of triangles in a ROAM terrain patch (overhead view).

This example illustrates progressive refinement to add detail to the upper right-hand

of the tile. Each vertex represents a rendered height post. .. 75

Figure 36: Simulation results for exact representation streaming algorithms. Frame

number is on the X axis. The rendering quality of the frame (PSNR in dB). Higher

values are better. .. 77

Figure 37: Top: Progressive refinement of a JPEG image. This image represents an

actual land geometry tile in the Grand Canyon simulation, with lighter shades

representing higher elevation. Bottom: A side view of the center cross section of the

same map, undergoing progressive refinement. .. 81

Figure 38: Simulation results for initial approximate representation streaming algorithms.

Frame number is on the X axis. The rendering quality of the frame (PSNR in dB).

Higher values are better. .. 83

Figure 39: Example: Two different streaming scenarios. In the first scenario, the more

distant Hill B is more likely to contribute to the rendered horizon. In the second

scenario, the nearby Hill C is more likely to contribute to the rendered horizon. 89

Figure 40: Two scenarios demonstrating the results of the extended priority scoring in

jpeg-ext. Note that in this example, we do not take the square root of the priority

score because we are only presenting a one-dimensional example. 90

Figure 41: Simulation results for approximate representation with more intelligent

prioritized streaming algorithms. Frame number is on the X axis. The rendering

quality of the frame (PSNR in dB). Higher values are better. 91

www.manaraa.com

xiv

Figure 42: Simulation results for high-quality approximate representation streaming

algorithms with intelligent streaming. Frame number is on the X axis. The rendering

quality of the frame (PSNR in dB). Higher values are better. 95

Figure 43: An example of a two-dimensional hierarchical bounding volume. Triangles

represent objects, circles represent bounding volumes. The virtual space is

represented on the left, and the associated heirarchy is represented on the right. ... 104

Figure 44: Recursive spatial subdivision of a virtual world (upper right) resulting in a

heirarchical topology (lower left). Users and dynamic objects in the world are

represented with circles. .. 106

Figure 45: The square-shaped virtual world, using different fixed attractor

configurations. Circles represent fixed attractors. The dotted lines represent the

world after being partitioned by the first few levels of bintree region subdivision. 130

Figure 46: The square-shaped virtual world, using the Row-lined Attractors

configuration. The smaller circles and dots represent dynamic objects, and the larger

circles represent fixed attractors. The dotted lines represent the world after being

partitioned with bintree. Note the larger, underutilized regions. 133

Figure 47: The square-shaped virtual world, using a regular square grid spatial

subdivision strategy. The dotted lines represent the borders between regions. 135

www.manaraa.com

1

Chapter 1 Introduction

The evolution and growing ubiquity of the Internet along with the wide distribution

of affordable computer graphics hardware has spurred a profusion in the creation of

online 3D virtual reality environments. These virtual worlds have initially focused on

gaming and entertainment but are evolving to support more complex virtual world

applications [strassburger]. The first widely successful virtual worlds were developed for

online gaming. Technical development focused on creating an expansive virtual world

that allowed a large number of users to simultaneously participate in a real-time gaming

experience in a genre of application termed “Massively Multiplayer Online Games

(MMOG)” [uo][wow]. In these systems, players connect to remote servers that manage

the simulation and interact with the world through virtual avatars. These MMOGs were

narrow in focus, allowing only game-specific interaction using pre-downloaded content.

This concept has been extended to construct more general purpose virtual environments

we refer to as “metaverses”, where the interaction between users and their environment is

less constrained and more free-form [active][croquet][blue].

These metaverses are characterized by a dynamic, persistent simulation, where the

world and the content expressed within it are constantly changing. This introduces a

number of problems in presenting a quality experience to the remote user. First, the real-

time interactive nature of virtual worlds requires support from the network infrastructure

to provide high packet-rate low-latency data delivery to manage a constant stream of

world update information [claypool]. Second, because the world environment is

expansive, detailed, and dynamic, it cannot be pre-downloaded. World information must

www.manaraa.com

2

be interactively streamed to the remote user [odlyzko]. Thirdly, because the world is free-

form, the world simulation workload is dynamic and unpredictable [kinicki]. The virtual

world’s simulation system must be able to cope with this variation in world activity and

adapt to the simulation workload.

1.1 Research Overview

As virtual worlds continue to evolve and gain in popularity, the desire for richer,

more expansive, and more detailed virtual worlds continually pressures the computer

systems that support them to improve [woodcock]. This thesis focuses on three

components to support networked virtual environments:

1) Cache optimization strategies in routers and network appliances through the

use of approximate data structures to increase the packet processing

capabilities of networking devices

2) Terrain data streaming techniques, focusing on the compressibility of

streaming terrain models and developing intelligent streaming and

prioritization algorithms for terrain data

3) Distributed system designs to support immersive virtual worlds simulations

through dynamic load balancing by using spatial subdivision methods

1.1.1 Network Packet Processing Optimization

The Internet is designed as a best-effort, packet-switched network. Communication

between different nodes connected to the Internet is divided into data packets and

delivered through a complex network of nodes and routers to reach their destination.

www.manaraa.com

3

None of the intermediate nodes in the network provide any guarantees to the order,

timeliness, or integrity of the packets they process. Even the act of forwarding data

packets towards their destination is not guaranteed. This allows the network to be

designed from simpler components, which has helped the Internet Protocol to gain world-

wide adoption as the de-facto standard for network data exchange. By exploiting this

understanding of the network, it is possible to construct more efficient packet processing

algorithms without changing the semantics of packet delivery.

The goal of real-time interactivity for networked virtual environments has changed

the type of traffic that the network must support. Currently, network appliances are

designed to support a smaller number of large data packets that make up the majority of

today’s Internet traffic, primarily being composed of web, file sharing, and video

streaming traffic [cisco]. Remote real-time interactive virtual environments require

continuous, low-latency updates, which has a traffic composition that is unlike the

majority of Internet traffic. In a packet-switched network such as the Internet, this means

that time-sensitive updates from remote virtual worlds bombard the network with a high

quantity of small data packets which represent world updates. This increases the packet

rate that the network must be able to support [ferreira][feng02].

At the network level, devices such as firewalls, network address translators (NAT),

and routers rely on fast packet classification in order to process packets in a timely

manner. These services require that packets be classified based on a set of rules before

deciding how to process the packet. The result of this classification can be used for

something as simple as deciding to admit or reject a packet (in the case of a firewall) or

something more complex, such as rewriting the identification markers of a packet (in the

www.manaraa.com

4

case of a NAT). These services require classification algorithms to not only analyze the

destination address but also flow identifiers such as source address, layer-4 protocol type,

and port numbers. Packet classification is a very complex task and there has been a large

amount of work done to try and develop more efficient classification algorithms [gupta].

Still, in the context of high-performance networks, the hardware requirements of

performing full classification on each packet at line rates can be overwhelming.

One method of accelerating packet identification is to employ a cache to store the

results of previous classification decisions. Since connections on the Internet are

discretized into data packets, each connection will generate many packets using identical

flow identifiers (unique markers that identify a packet as belonging to a specific

connection between two applications communicating over the network). By employing a

cache, it is possible to eliminate significant amounts of repeated computation by

bypassing the packet classification algorithm, enabling packets to be processed at line

rates. It is not unusual for routers on the Internet to be dealing with hundreds of

thousands of concurrent flows [trammel], which require larger caches to accommodate

the larger volume of distinct flow identifiers. Since larger caches are necessarily slower

and monetarily more expensive, the design of a caching algorithm must attempt to use as

little memory as possible.

This thesis addresses the problem of building faster, more compact, and more

affordable packet classification caches by introducing the idea of creating an approximate

cache – a cache that stores inexact representations of data instead of the data itself – that

maintains the existing semantics and reliability expectations of the network. This cache

can be used in two different ways. In the first way, it can be used to replace traditional

www.manaraa.com

5

exact-precision caches, trading a very small potential misclassification rate in exchange

for having smaller, faster caches. We show that the memory footprint required to support

the same cache hit rate is reduced by nearly an order of magnitude. In the second, it can

be used to augment traditional set-associative caches, allowing them to be accessed more

efficiently. By adding a small (much less than 1/10
th

 the size) approximate cache in front

of an exact n-way set associative cache we can reduce the amount of exact cache memory

accessed to service a cache hit by nearly 1/n. Furthermore, the approximate cache can,

with a probability near 100%, determine if a query will miss the exact cache. These

designs will allow for the construction of faster, more cost-effective network devices to

support the high packet rate traffic that is typical of interactive virtual worlds.

1.1.2 Terrain Data Representation and Streaming

One area of rapid growth in online application usage is areas of virtual mapping,

such as Google Earth [gearth] and massively multi-user virtual worlds on both desktop

[nielson] and mobile platforms [patro], which also need to render mapping and

geographical data (Figure 1, Figure 2). For these types of applications, the data and the

Figure 1: Screenshot of a terrain rendering

Figure 2: Underlying rendered geometry

www.manaraa.com

6

users viewing the data are often not co-located, so the world geometry must be delivered

through the network for remote rendering and display. The amount of data that describes

the world’s geometry will exceed the network’s ability to deliver it in a timely manner

and must be managed in a way that allows the client to receive the data they need to have

a visually pleasing experience without overwhelming the network, other applications that

share the network, and other components of the virtual world simulation. The remote

visualization of the virtual environment requires content and network-aware streaming

algorithms to disseminate visualization data to remote viewers in order to provide a time-

sensitive high-quality rendering for the users of the virtual worlds.

There is an imperative need for techniques and algorithms that are aware of network

constraints and the limits of human perception. Data that is sent through the network that

exceeds the ability of the viewer to perceive it is wasted bandwidth. To maximize the

user’s virtual terrain browsing experience, the order in which remote data is transmitted

to the client should be dictated by the viewer’s local perception – that is to say, visible

features should be prioritized before occluded features, nearby objects favored over

distant objects and complex data features sent before uniform data. Models and object

geometry should be transmitted in a quality-aware manner that allows information to be

transmitted continuously in a compact form that allows clients to view data with

progressively increasing quality. This thesis proposes algorithms that use estimates of a

terrain’s features and visual impact on the viewer to prioritize streaming.

The following are the key observations about the limitations of the network and

human perception that guide the design of a well-behaved terrain streaming algorithm:

www.manaraa.com

7

1. The amount of bandwidth that is available to the terrain streaming algorithm is

limited.

2. Large variations in terrain geometry (such as mountains) are more important than

more uniform geometry (such as small hills or plains).

3. Terrain near the viewer occupies a larger visual footprint and smaller variations

in terrain geometry become magnified as they get closer. This means that terrain

geometry near the viewer is more important than distant terrain geometry.

This thesis proposes using a modified progressive JPEG representation to enhance

the compressibility of terrain data. By describing the terrain geometry as a height field

and dividing it into fixed-area tiles, the data becomes analogous to a grey-scale bitmap

image. This representation is amenable to JPEG-style lossy compression that allows the

data to be compressed in a way that prioritizes high magnitude frequency data (i.e. cliffs,

mountain peaks, and inclines) and de-prioritizes low magnitude frequency data (i.e.

plains and flat, featureless areas). By using a progressive JPEG encoding, the terrain

geometry is reorganized into tiled refinement layers so that the geometry can be

described in varying levels of detail, using a proportionately smaller amount of data. By

considering the features of the terrain and the remote user’s viewpoint, these tiled

refinement layers are streamed to the remote client so that the refinement layer tile that

will have the most visual impact on the viewer will be sent first.

1.1.3 Distributed Computing for Virtual Worlds

One fast growing area of computer science is the management of distributed virtual

worlds such as Second Life and World of Warcraft [kinicki][rosedale][sl][wow]. An

www.manaraa.com

8

example of such a virtual world is shown in Figure 3. Because these virtual worlds can

have unbounded size and complexity, it is necessary to develop systems that can

distribute the computing load of managing the virtual world over many server computers.

Management of an unbounded dataset is a problem because no single computer can

process the state of the world in a timely fashion. The only way to manage a large virtual

world is to use a distributed system, where the task of managing the virtual world is

divided into smaller, more manageable pieces that can each be processed on a single

computer.

One way to approach the problem of load balancing a large virtual world is to

spatially divide it into regions mapped to multiple computing resources. One simple

approach is to divide the world into a regular grid [rosedale] (Figure 4). While this kind

of structure does successfully manage to divide the world into smaller pieces, it is not an

ideal solution. In a dynamic virtual environment, the computing load is not spread

uniformly throughout the world [varvello]. This will lead to some regions being mostly

empty, resulting in underutilized computing resources. Some areas will have a high level

Figure 3: Screenshot from popular massively-multiplayer online game, World of Warcraft [gamersbin]

www.manaraa.com

9

of activity, resulting in degraded performance because the region’s server cannot

accommodate the computing load of the world simulation. Spatial subdivision using

regular grids also makes an assumption about the virtual scale of the simulation. For

example, a region could consist of one square meter, or one square mile. This fixes the

expected scale of the simulation. A grid that is scaled appropriately to simulate an ant

colony will not be scaled appropriately to simulate larger virtual worlds such as a

Disneyland-like theme park.

This thesis addresses this problem of load balancing in virtual world systems by

proposing a distributed server infrastructure using a hierarchical dynamic spatial

partitioning system. As the distribution of entities within the virtual world move around

and cluster together, the system dynamically subdivides the virtual space, assigning more

servers to process more densely populated areas (Figure 5). We show that using a simple

bintree structure is as effective at efficiently distributing the simulation workload as more

sophisticated (but difficult to compute) global knowledge spatial subdivision algorithms.

Figure 4: Overhead view of a virtual world using

regular grid spatial subdivision. Circles represent

entities/players.

Figure 5: Overhead view of a virtual world using

dynamic spatial subdivision. Each rectangular region

is managed by a separate server

www.manaraa.com

10

1.2 Dissertation Overview

The rest of this dissertation is organized as follows.

 In Chapter 2, we discuss improving the performance of network devices by

introducing a novel approximate caching approach for packet and flow identification.

Chapter 3 presents the design and evaluation of an adaptive virtual terrain streaming

protocol that balances the limitations of the network and desire for high quality

visualization to deliver terrain geometry in a progressive, quality-aware and adaptive

manner.

Chapter 4 explores the construction of the server-side system for virtual world

simulation. By using a hierarchical space partitioning algorithm to dynamically assign

resources in a distributed computing environment, we design a system that has good

performance characteristics using realistic knowledge requirements.

Finally, Chapter 5 summarizes the research contribution of this dissertation,

discusses remaining challenges, and outlines future research directions.

www.manaraa.com

11

Chapter 2 Approximate Packet Classification Caching

As the number of hosts and network traffic continues to grow, the need to efficiently

handle packets at line speed becomes increasingly important. Packet classifiers allow in-

network devices such as firewalls [qiu], edge routers performing priority marking

[stoica], load balancing switches, and network address translators [egevang] to provide

differentiated service and access to network and host resources by efficiently determining

how packets should be processed. These services require packets to be classified using a

set of rules to be applied to packet header information such as the source and destination

address, port numbers, and protocol type. The complexity of the packet classification

problem and its importance in constructing efficient networks has led to a large volume

of work focusing on the development of more efficient classification algorithms

[feldmann][gupta], especially concentrating on improving address prefix-matching

algorithms [srinivasan][waldvogel]. Bloom Filters have also been used to accelerate exact

prefix-matching schemes [dharmapurikar]. However, the requirements of performing a

full classification on each packet at current line rates can be overwhelming [partridge].

To keep up with network speeds, some approaches resort to expensive hardware

implementations to improve performance [lakshman][xu]. However, there does not

appear to be a good algorithmic solution for multiple field classifiers containing more

than two fields [baboescu2].

The evolving demands of online gaming and immersive networked virtual

environments are also applying pressure to network development. These applications are

latency sensitive and require frequent updates as players and entities in those virtual

www.manaraa.com

12

worlds move and interact with the environment and with each other. The update packets

in such applications are typically much smaller in size than more traditional bulk-data

packets, further increasing the packet processing rate demands on networking hardware,

even without increasing overall bandwidth requirements [ferreira][feng02].

It has been well established that memory access delays limit packet classification

speeds. While the lookup algorithm itself can be implemented in hardware, the dynamic

nature of the classifying rules requires that the classification table be stored in memory

whose access latency limits classification speed. Due to the inherent latency of RAM

memory access and the need to perform classification lookups at line speed, there is only

sufficient amount of time to perform less than half a dozen memory accesses [varghese].

Unfortunately, the best solutions to this problem still require a significantly higher

number of memory accesses [gupta].

One effective way to improve classification lookup speed is to avoid performing full

classification operations by caching classification decisions and using these previously

cached results whenever possible. Whenever a new flow identifier is encountered, a full

packet classification decision occurs. The result of this classification decision is cached

and the following packets in that flow are classified using the cached values instead of

being classified using the slower packet classification engine. Caching improves lookup

speeds by taking advantage of the temporal locality inherent in network traffic [claffy].

Unfortunately, packet classification caches must scale up to the total number of

flows and it is not unusual for routers on the Internet to concurrently handle hundreds of

thousands of flows [trammel]. Because of this, packet classification caches must be

reasonably sized in order to maintain high hit rates. The goal of this work is to develop a

www.manaraa.com

13

more scalable packet classification cache, suitable for deployment on the evolving

Internet.

Section 2.1 explores related work in the area of packet classification and network

caching. Section 2.2 outlines the argument for using an approximate algorithm in the area

of packet classification. Section 2.3 introduces the first approximate algorithm, a Bloom

filter based approach. Section 2.4 proposes another approximate algorithm, based on set-

associative cache framework storing hash digests identifiers. These algorithms are

experimentally evaluated in Section 2.5.

2.1 Related Work

A classic approach to managing packetized data streams that exhibit temporal

locality is to employ a cache that stores recently referenced items. Packet-switched

networks inherently exhibit temporal locality; the arrival of a packet on an Internet link

implies a very high probability of the arrival of another packet with the same flow

identifier [brownlee][feldmann][mccreary][thompson].

 Employing caches to take advantage of this temporal locality has been shown to

improve the performance packet classifier significantly in Internet routers [jain][xu].

Network cache design has borrowed concepts from computer architecture (Least-

Recently Used (LRU) stacks, set-associative multi-level caches) [jain]. Some caching

strategies rely on CPU L1 and L2 cache [partridge] while others attempt to map the IP

address space to memory address space to use the hardware TLB [chiueh]. Another

approach is to add an explicit timeout to an LRU set-associative cache to improve

www.manaraa.com

14

performance by reducing thrashing [xu]. In addition to leveraging the temporal locality

observed on networks, approaches to improving cache performance have applied

techniques to compress and cache IP ranges to take advantage of the spatial locality in the

address space of flow identifiers [chiueh2][gopalan]. This effectively allows multiple

flows to be cached in a single cache entry, so that the entire cache may be placed into

small high-speed memory such as a processor's L1/L2 cache.

How well a cache design performs is typically measured by its hit rate for a given

cache size. Generally, as additional capacity is added to the cache, the hit rates and

performance of the packet classification engine should increase. In a set-associative cache

architecture, increasing the level of associativity will improve cache performance, but

yields diminishing returns for associativity levels greater than four [li].

Unlike route caches that only need to store destination address information, packet

classification caches require the storage of full packet headers. Unfortunately, due to the

increasing size of packet headers (the eventual deployment of IPv6 [huitima]), storing

full header information can be prohibitively expensive given the high-speed memory that

would be required to implement such a cache. It is beneficial to develop a cache

architecture that can store more information, without increasing the amount of memory

required to support the cache.

2.2 An Approximate Algorithm Approach

Traditionally, cache designs trade off time and space with the goal of balancing the

overall cost and performance of the device. This thesis proposes another axis of the

www.manaraa.com

15

design space that has not been previously considered: accuracy. In particular, we

quantify the benefits of relaxing the accuracy of the cache on the cost and performance of

packet classification caches.

To understand the implications of developing an approximate packet classification

cache, we must first consider the design semantics of the Internet. The network is

structured as a packet-switched best-effort service, meaning that communication between

hosts is divided into packets before being transmitted through the network, with

intermediate nodes in the network providing no guarantees about bandwidth availability

or the reliability, integrity, timeliness and order of data delivery. The responsibility of

ensuring that a data packet is delivered is delegated to the end points, rather than the

network infrastructure itself. This simplicity of this design was motivated by a desire to

connect many different networks together, communicating in a single common Internet

Protocol (IP), without requiring any internal changes to any of the distinct networks

connecting to the Internet. By designing a protocol that required few guarantees from the

underlying network, it would be possible to connect any type of network (such as

ARPANET, Packet Radio and Packet Satellite) to a common Internet [leiner]. While this

philosophy has led to the world-wide adoption of IP, this lack of reliability forces the

burden of detecting and correcting for network faults to end hosts; the core infrastructure

of the Internet is simple and the edges and end points of the network are intelligent. This

design philosophy is known as the end-to-end principle [saltzer]. In this scheme, since the

end hosts are designed to detect and correct faults, this introduces an opportunity to

employ approximate algorithms within the network infrastructure because any errors

www.manaraa.com

16

generated by the network will automatically be rectified at the endpoints of the data

communication.

This chapter explores the design of two styles of approximate caches. The first is

explored in Section 2.3, and is based on a Bloom filter data structure [bloom]. A model

for optimizing Bloom filters for this purpose is explored, as well as extensions to the data

structure to support graceful aging, bounded misclassification rates, and multiple binary

predicates. This design will yield potential false-positive matches and can store only a

limited amount of information on each flow identifier. This design is appropriate for use

in firewalls or routers. These types of approximate caches can provide nearly an order of

magnitude cost savings at the expense of misclassifying one billionth of packets for IPv6-

based networks.

The second design is explored in Section 2.4 and is based on storing hash digests of

flow identifiers. It is suitable for situations requiring an arbitrary amount of information

to be stored for each flow identifier. This design can also be adapted for use in a multi-

level cache, using the digest cache to augment a more traditional set-associative cache to

provide improved cache performance without incurring the cost of a probabilistic

misclassification. In this scenario, the digest cache is used as a Las Vegas style of

approximate algorithm, where the digest cache will always correctly identify locations in

the cache where a given flow identifier is not stored and yield high-probability matches.

2.2.1 Dealing with Misclassification

Measurement studies have discovered that between 1 in 1100 to 1 in 32000 TCP

packets on the Internet will fail their CRC check, showing that packet corruption has

www.manaraa.com

17

occurred, even though link-layer checksums should only admit error rates of 1 in 4 billion

[stone]. Extrapolating, this means that on average, 1 in 16 million to 1 in 10 billion TCP

packets will contain an undetectable error. With this in mind, we contend that introducing

a packet misclassification probability in the order of 1 in a billion packets will not

meaningfully degrade the utility of the network. It is the responsibility of the end system

to detect and compensate for errors that may occur in the network [saltzer]. The

immediate question that arises when we introduce the possibility of a misclassification is

to account for the result of the misclassifications.

Consider the case of a firewall. If F1, F2 ... Fq unique flows were to set signatures in

an approximate cache that matched the signature to a new flow F’, we will accept F’ as a

previously validated flow. In the case that F’ is a valid flow, no harm is done, even

though F’ would never have been analyzed by the packet classifier. If F’ is a flow that

would have been rejected by the classification engine then there may be more serious

repercussions - the cache would have instructed the firewall to admit a bad flow into the

network. This case can be rectified for TCP-based flows by forcing all TCP SYN packets

through the classification engine. Another solution would be to periodically reclassify

packets that have previously been marked as cached. If a misclassification is detected, all

bits corresponding to the signature of the flow id could be zeroed. This approach has the

drawback of initially admitting bad packets into the network, as well as causing flows

which share similar flow signatures to be reclassified.

If an attacker wanted to craft an attack on the firewall to allow a malicious flow, F’,

into the network, they could theoretically construct flows, F’1, F’2 ... F’q, that would

match the flow signature of F’. If the firewall’s internal hash functions were well known,

www.manaraa.com

18

this could effectively open a hole in the firewall. To prevent this possibility, internal hash

functions should not be openly advertised. An additional measure would be to randomly

choose the hash functions that the firewall uses. Hash functions can easily be changed

periodically as the cache ages, as there is no need to synchronize the hash function with

any external host.

In the case of a router, a misclassified flow could mean that a flow is potentially

misrouted, resulting in an artificially terminated connection. In a practical sense, the

problem can be corrected by an application or user controlled retry. In the case of UDP

and TCP, a new ephemeral port would be chosen, constructing a new flow identifier, and

network connectivity can continue. If an approximate cache has misclassified a previous

flow, it will have no impact on the classification of the new flow. The network is also

designed to atomically guard itself from errors. For example, if the misclassification

results in a routing loop, the network already protects itself from this error by using the IP

time-to-live counter (TTL). If we randomly force cached flows to be re-classified, we can

reduce this “fatal” error to a transient one. TCP retransmits and application-level UDP

error handlers will make this failure transparent to the user.

Real-time update packets that are characteristic of online gaming and networked

virtual worlds are performed with UDP packets for low-latency signalling [ferreira]

[feng02]. These protocols are already designed to be resilient to packet loss.

www.manaraa.com

19

2.3 Approximate Algorithm 1: Bloom Filters

A Bloom filter is a data structure that allows a quick, but approximate test, to see if

an identity, x, is a member of a set, S [bloom]. This approach may generate false positives

– a Bloom filter may incorrectly report that an identity, x, is a member of the set – but a

Bloom filter will never generate false negatives. The Bloom filter is a very space-efficient

data structure, which makes it an attractive data-structure from which to construct a

cache. Bloom filters were originally invented to store large amounts of static data

(hyphenation rules on English words), but have found applications in computer

networking [baboescu][mitzenmacher]. Applications range from web cache sharing [fan]

to active queue management [feng] to IP traceback [sanchez][snoeren] to resource

routing [byers][czerwinski].

The Bloom filter data structure used in this chapter consists of M = N × L bins. (Each

bin consists of one bit.) These bins are organized into L levels with N bins in each level,

to create N
L
 virtual bins (possible permutations). To interact with the Bloom filter, there

are L independent hash functions, each associated with one bin level. Each hash function

maps an element into one of the N bins in that level. For each element we enter into the

Bloom filter, we compute the L hash functions and set all of the corresponding bins to 1.

To test membership of any element in our Bloom filter, we compute the L hash functions

and test if all of the corresponding buckets are set to 1. See Figure 6 for an example. This

approach may generate false positives – a Bloom filter may incorrectly report that an

element is a member of the set S.

www.manaraa.com

20

For optimal performance, each of the L hash functions, H1, H2… HL should be a

member of the class of universal hash functions [carter]. That is, each hash function

should distribute elements evenly over the hash’s address space, and for each hash

function , the probability of collision () () , is 1/N. In

practice, we only compute one hash function, , for each insertion/query

operation and simply use different portions of the resulting hash to implement the L hash

functions.

This definition of a Bloom filter differs slightly from the classical definition [bloom],

where each of the L hash functions can address all of the M bit buckets. This definition of

the Bloom filter is often used in current designs due to potential parallelization gains to

be had by artificially partitioning memory [feng]. It should be noted that this approach

yields a negligibly worse probability of false positives under the same conditions but an

equal asymptotic false-positive rate [broder].

2.3.1 Properties of the Bloom Filter

In order to better design and understand the limitations of our architecture, it is

important to understand the behavioral properties of a Bloom filter. In particular, we are

Figure 6: An example: A Bloom filter with N=5 bins and L=3 hash levels. Suppose we wish to insert an

element, e.

www.manaraa.com

21

interested in how the misclassification probability and the size of the Bloom filter will

affect the number of elements it can store.

A Bloom filter storing k elements has a probability of yielding a false positive of

  
L

k

N
p 






  111 (1)

For our purposes, we need to know how many elements, k, we can store in our bloom

filter, without exceeding some misclassification probability, p. Solving for k yields

)11ln(

)1ln(1

N

p
k

L




 (2)

To simplify this equation, we apply the approximation . So

constructing ,

)1ln(

)1ln(

)ln(

)1ln(

1

1

1

1

L

L

N

L

p
L

M

pN

e

p











 (3)

From Equation 3 it is clear that the number of elements, κ, that a Bloom filter can

support scales linearly with the amount of memory M. The relative error of this

approximation, κ/k, grows linearly with the number of hash functions L, and decreases

with increasing M. For the purposes of our application of this approximation, the relative

error is negligible. (For M ≥ 1024 bytes and L ≤ 50, the relative error is less than 0.35 %.)

Note that solving for p in this equation yields the more popular expression [broder,

fan, snoeren],

  LMLep  1 (4)

www.manaraa.com

22

2.3.2 Dimensioning the Bloom Filter

Bloom filter design was originally motivated by the need to store spell-checking

dictionaries in memory. The underlying design assumption is that the intent is to store a

large amount of static data. However, this assumption is not applicable when dealing with

dynamic data, such as network traffic. Previous work has attempted to dimension a

Bloom filter such that the misclassification rate is minimized for a fixed number of

elements [broder].

To apply Bloom filters to the context of driving a cache, we prefer to maximize the

number of elements k that a Bloom filter can store, without exceeding a fixed maximum

tolerable misclassification rate, p. To maximize κ as a function of L, we first take the

derivative dκ/dL, set it to 0, and solve for L to find the local maximum.

)1(

ln
)1ln(0

)1(

ln
)1ln(0

)1(

ln
)1ln(

)1ln(

1

1
1

1

1
1

2

1

1
1

2

1

L

L
L

L

L
L

L

L
L

L

pL

pp
p

pL

pp
p

L

M

pL

pp
p

L

M

dL

d

p
L

M

dL

d

dL

d










































 (5)

Now suppose a u = p
1/L

, so L = ln p / ln u.

uu uu

uuuu

u

uu
u

uup

pu
u











1)1(

)1ln()1(ln

)1(

ln
)1ln(0

)1)(ln/(ln

ln
)1ln(0

 (6)

www.manaraa.com

23

Since p ϵ [0, 1] then u ϵ [0, 1], u only has one solution, u = ½, which means κ is

maximized for

 ppL 2log2ln/ln  (7)

This is an interesting result, because it implies that L is invariant with respect to the size

of the Bloom filter, M.

The accuracy of this approximation increases as M increases. In our testing, for

cache sizes greater than 1KB, this approximation yields no error. In all the simulations

presented in this chapter, this approximation and the optimal value of L are equal. Even if

we choose a slightly sub-optimal value of L, the difference in the maximum number of

flows the Bloom filter can store is negligible. Figure 7 graphs this relationship. For values

of L that are near optimal, the number of flows, k, that the Bloom filter can store are

nearly identical.

Figure 7: The maximum number of elements that can be stored by a 512KB cache

www.manaraa.com

24

Figure 8 graphs the relationship between p and k. We can see that the relationship is

roughly logarithmic. This approximation serves as a good guide for ranges of two orders

of magnitude or less.

A less obvious implication of this approximation is the relationship between the

amount of memory, M, the number of elements, k, and the probability of a false positives,

p. Since the optimal choice of L is asymptotically invariant with respect to M, and κ is

proportional to k, we can assert that k is linearly related to M. A visual representation of

this relationship is depicted in Figure 9. Note that a Bloom filter cache with a

misclassification rate of one in a billion can store more than twice as many flows as an

exact IPv4 cache, and almost 8 times as much as an exact IPv6 cache. (Each entry in an

exact IPv6 cache consumes almost 3 times as large as an IPv4 entry [huitima].) The

Figure 8: The trade-off between the misclassification probability, p, and the maximum number of

elements, k, using optimum values of L.

www.manaraa.com

25

effective storage capacity of the Bloom filter decreases logarithmically with the

misclassification rate.

It is also important to recognize that with this scheme, it is possible to store mixed

IPv4/IPv6 traffic without making any major changes to our design.

To summarize:

 The optimal value of L is invariant with respect to the size of the Bloom filter,

M.

 k and p are roughly logarithmically related.

 k is linearly related to M.

2.3.3 Multiple Predicates

There are a number of applications where multiple binary predicate data may be

useful in in a packet classification cache. For example, in the case of a router, the

forwarding interface for must be stored along with the flow identifier. Our first extension

Figure 9: The relationship between the amount of memory, M, and the maximum number of elements

(flows), k that can be stored while maintaining a given misclassification probability

0 2 4 6 8 10 12 14 16
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Amount of memory, M (in MegaBytes)

M
ax

im
um

 N
um

be
r o

f F
lo

w
s,

 k
, (

in
 th

ou
sa

nd
s)

Bloom filter, p=1e-9

Bloom filter, p=1e-8

Bloom filter, p=1e-7

Bloom filter, p=1e-6

Exact Cache, IPv4

Exact Cache, IPv6

www.manaraa.com

26

to the Bloom filter is to extend its storage capability to a multiple binary predicate data

structure. We propose a modification to our existing algorithm that allows us to store

multiple binary predicates while preserving the desired original operating characteristics

of the Bloom filter cache.

Consider a router with I interfaces. This is analogous to a data structure that records I

binary predicates. To store this information, we will construct a cache composed of I

Bloom filters. Suppose we are caching a flow, e, that should be routed to the i
th

 interface.

We would simply insert e into the i
th

 Bloom filter in our cache. To query the cache for the

forwarding interface number of flow e, we will simply need to query all I Bloom filters.

If e is a member of the i
th

 Bloom filter, this implies that flow e should be forwarded

through the i
th

 interface. If e is not a member of any Bloom filter, e has not been cached.

In the unlikely event that more than one Bloom filter claims e as a member, we have an

ambiguous result. One solution to this problem is to treat the cache lookup as a miss by

reclassifying e. This approach preserves correctness while adding only minimal operating

overhead for the small fraction of packets for which this will occur.

The probability of misclassification, p, with this algorithm is

Figure 10: An example: A modified Bloom filter with 5 buckets and 2 hash levels, supporting a router with

8 interfaces. Suppose we wish to cache a flow e that gets routed to interface number 2.

H1(e)

Level 1

H1(e)

Level 2

www.manaraa.com

27

    ILk
Np


 11111 (8)

Solving for k’, the maximum number of flows this approach can store, we find

   

 N

p
k

LI








11ln

111ln
1/1

 (9)

Using the same technique discussed earlier in Section 2.3.2, we find that k’ is maximized

when

  

)2ln(

11ln
/1 I

p
L


 (10)

The proposed extension to the Bloom filter cache requires increasing the amount of

memory accessed by a factor of I. As will be shown in Section 2.5.3, additional memory

accesses can incur serious performance penalty. However, by taking advantage of the

memory bus width and fetching buckets from multiple Bloom filters simultaneously can

easily mitigate this disadvantage (Figure 10).

Consider a Bloom filter in which each bucket can store a pattern of I bits, where bit i

represents interface i. When adding a packet to the bloom filter, we would only update bit

i of each bucket. When querying the modified Bloom filter for a flow, e, we will take the

results from each level of the bloom filter, and AND the results.

2.3.3.1 Multiple Predicates with Non-Uniform Distributions

The equations presented earlier in Section 2.3.3 assume that elements are evenly

distributed over the multiple binary predicates. If the elements are not evenly distributed,

our modified Bloom filter can become polluted in a short amount of time.

www.manaraa.com

28

For example, suppose a router that supports 16 interfaces (binary predicates), using

1KB of memory and a misclassification probability of 1e-9. If flows are distributed

evenly over the interfaces, this configuration can support 167 elements. Conversely, if

90% of flows set the first predicate, it would require only 13 elements to “fill” this Bloom

filter.

To compensate for this deficiency, suppose a new hashing function,

 , and let (()) . Instead of setting bit i in a Bloom filter, we will set bit

j (Figure 11). This approach ensures that set bits are uniformly distributed throughout the

cache, even when the elements are not evenly distributed.

2.3.3.2 Multiple Predicates Compared With Single Predicate Bloom Filters

It is important to examine how the multiple-binary-predicate Bloom cache compares

to the single-predicate case. As discussed previously, the single-bit Bloom filter cache

can store a maximum of (). For an optimized choice of

 , κ becomes

)1ln(
)ln(

)2ln(ln/2ln

max

pp
p

M  (11)

Figure 11: As before, suppose flow e is to be forwarded to interface 2. Now, let us suppose that H’(e) = 3.

So j = (i+H’(e)) mod I=(2+3) mod 8 = 5.

H1(e)

Level 1

H1(e)

Level 2

www.manaraa.com

29

The maximum number of flows the modified multi-bit Bloom filter can store is

 ([()]

)

 ()
 (12)

Applying the approximation we find

 ([()]

) (13)

When L’ is optimized, κ’ becomes

 (())
 ([()]

) (14)

where

 (())
 (15)

Immediately, we can see that the two approaches are still linearly related in M. Note here

that I and p are constants. This is an important property, because it means that our

proposed algorithm preserves the behavior of the single binary predicate cache.

To better determine the relative performance of the multiple binary predicate and the

single-binary-predicate cache approaches, we take the difference in the maximum

number of flows that each design will accommodate.

 () (

 (())

) (16)

For , () , giving

 ()

(

) (17)

www.manaraa.com

30

If I is not very big, as is the case when considering the number of interfaces of a

router (for reference, a Juniper T640 routing node has 160 interfaces) then ,

we can approximate by

 ()

(

)

 ()

()
 (18)

This is an overestimate of the difference. So, we can say that, at worst, this approach

scales logarithmically with I (for M and p constant).

It is surprising how effective this approach is. The algorithm does not pollute the

Bloom filter by setting bits any more than the single-bit approach. However, it is slightly

more susceptible to contamination because each membership query examines L × I bits,

as opposed to the L bits of the single binary predicate Bloom filter.

Figure 12: Comparison of storage capacity of various multi-predicate Bloom filters

www.manaraa.com

31

Figure 12 compares the difference in the maximum number of flows that can be

stored by a multi-predicate Bloom filter cache. The number of flows that a multiple

predicate Bloom filter can store decreases logarithmically with the number of binary

predicates.

Note that the multi-predicate solution is a superset of the single-predicate solution –

setting I to 1 yields the equations presented in Section 2.3.1.

2.3.4 Bloom Filter Aging

This second extension to the Bloom filter adds the ability to evict stale entries from

the cache. Bloom filters were originally designed to store digests of large amounts of

static data – adapting this algorithm to gracefully evict elements is required to use this

data structure meaningfully in a dynamic environment such as the Internet.

The first step towards developing an algorithm to age a Bloom filter is to decide how

much information has already been stored in the cache. A simple method of deciding

when the cache is full is to choose a maximum tolerable misclassification probability, p.

When the instantaneous misclassification probability exceeds this constant, (pinstantaneous >

p), we consider the Bloom filter to be “full”. We can calculate pinstantaneous by using

different means. Let ω1, ω2, ... , ωL be the fractions of buckets of each level of the Bloom

filter that are set. The probability of misclassification is simply the product of ωi’s.

 ∏

 (19)

This method will accurately estimate the misclassification probability. The drawback to

this approach is that it will require counting the exact number of bits we set, complicating

www.manaraa.com

32

later parallel access implementations of this algorithm, as well as adding several per-

packet floating-point operations.

We can devise a simpler estimate of Pmisclassification that does not involve precise bit

counting, nor global synchronization, by applying knowledge of the properties of the

Bloom filter discussed earlier. We simply need to count the number of flows k’ that we

have inserted into our Bloom filter. So our estimate of the misclassification probability

becomes

 () (20)

Reversing this equation, and solving for kmax we get

 ⌊ (

) ()⁄ ⌋ (21)

 This estimate also provides the benefit of simplicity of calculation – floating-point

arithmetic is no longer required during runtime (since P, N, L are constant), only an

integer comparison (k’ > kmax). Additionally, it becomes easier to gauge the behavior of

the cache - k’ increases proportionally with the number of new flows we observe.

With this information, it is now possible to design an aging strategy for the Bloom-

filter cache.

2.3.4.1 Bloom Filter Aging: Cold Cache Approach

This naïve approach to the problem of Bloom filter aging involves simply emptying

the cache whenever the Bloom filter becomes “full”. The main advantage to this solution

is that it makes full use of all of the memory devoted to the cache, as well as offering a

simple implementation while maintaining a fixed worst-case misclassification

probability.

www.manaraa.com

33

The disadvantages, however, are quite drastic when considering the context of a

high-performance cache:

 While the cache is being emptied, it cannot be used.

 Immediately after the cache is emptied, all previously cached flows must be re-

classified, causing a load spike in the classification engine.

 Zeroing out the cache may cause a high amount of memory access.

This approach mainly serves as a reference point to benchmark further algorithm

refinement.

2.3.4.2 Bloom Filter Aging: Double-Buffering

If we partition the memory devoted to the cache into two Bloom filters, an active

cache and a warm-up cache, we can more gracefully age our cache. This approach is

similar to the one applied in Stochastic Fair Blue [feng]. The basic algorithm is given in

Figure 13. The goal of this approach is to avoid the high number of cache misses

immediately following cache flush, which occurs when the cache is full and older, stale

entries must be evicted. By switching to a background cache, we can start from a

“warmed-up” state. This approach can be thought of as an extremely rough

approximation of LRU.

However, this approach also has its drawbacks:

 Doubling the memory requirement to store the same number of concurrent flows,

as compared to the cold-cache case.

www.manaraa.com

34

 Zeroing out the expired cache still causes a load spike in the use of the memory

bus (although it is a smaller spike). This can be partially mitigated by slowly

zeroing out memory.

 If the instantaneous number of concurrent flows, kinst, is greater than kmax, this

system will observe severe thrashing. Spikes in cache miss rates may be observed

whenever kinst > kmax / 2 , depending on flow duration and packet inter-arrival

rates

 The simplest, naive implementations of this algorithm will double the number of

memory accesses required to store a new flow. This performance loss can be

when a new packet arrives

 if the flow id is in the active cache

 if the active cache is more than ½ full

 insert the flow id into the warm-up cache

 allow packet to proceed

 otherwise

 perform a full classification

 if the classifier allows the packet

 insert the flow id into the active cache

 if the active cache is more than ½ full

 insert the flow id into the warm-up cache

 allow packet to proceed

 if the active cache is full

 switch the active cache and warm-up cache

 zero out the old active cache

Figure 13: Pseudocode for double-buffer aging algorithm for Bloom filters

www.manaraa.com

35

recovered by memory aligning the two bloom filters, so that fetching a word of

memory will return the bit states of both Bloom filters.

2.4 Approximate Algorithm 2: Digest Caches

In this section, we propose the notion of digest caches for efficient packet

classification. The goal of digest caches is similar to Bloom-filter caches proposed in

Section 2.3; it trades some accuracy in flow identification in exchange for increased

performance.

There are two primary limitations of this Bloom filter cache design. First, each

Bloom filter lookup requires N independent memory accesses, where N is the number of

hash levels of the Bloom filter. For a Bloom filter optimized for a 1 in a billion packet

misclassification probability, N=30. Second, no mechanism exists to recover the current

elements in a Bloom filter, preventing it from using efficient cache replacement

mechanisms such as LRU.

Digest caches, however, allow traditional cache management policies to be

employed to better manage the cache over time. Instead of storing a Bloom filter

signature of a flow identifier (source and destination IP addresses & ports and protocol

type), it is only necessary to store a hash of the flow identifier, allowing for smaller sized

cache entries. This idea is extended to accelerate exact caching strategies by building

multi-level caches with digest caches in Section 2.4.4.

Network cache designs typically employ simple set associative hash tables, an idea

that borrowed from traditional memory management systems design. The goal of the

www.manaraa.com

36

network cache is to quickly determine the operation or forwarding interface that should

be used, given the flow identifier. Hashing the flow identifier allows traditional network

processors to determine what operation or forwarding interface should be used while

examining only a few of entries in the cache. One significant limitation of exact- match

caches for flow identifiers is the need to store large flow identifiers (e.g. 37 bytes for an

IPv6 flow identifier) with each cache entry. This limits the number of flows that can be

stored in a cache and increases the time necessary to find information in the cache.

The most important property of a digest cache is that it stores only a hash of the flow

identifier instead of the entire flow identifier. The goal of the digest is to significantly

reduce the amount of information stored in the cache, in exchange for a small amount of

error in cache lookups. Digest caches can be used in two ways. First, they can be used as

the only cache for the packet classifier, allowing the packet classifier caches to be small.

Second, they can be used as an initial lookup in an exact classification scenario. This

allows a system to quickly partition the incoming packets into those that are in the exact

cache and those that are not, as well as identifying likely match locations in the exact

cache.

Digest caches are superior to Bloom caches in two ways. First, cache lookups can be

performed in a single memory access. Second, they allow direct addressing of elements,

which can be used to implement efficient cache eviction algorithms such as LRU.

2.4.1 Dimensioning the Digest Cache

The idea of a digest cache is to compare compact hashed flow identifiers to match

cached flows, instead of comparing the larger full flow identifiers. In a sense, this scheme

www.manaraa.com

37

trades the accuracy of the cache for a reduced storage requirement. Cache memory is

partitioned in a similar manner to a traditional, set-associative cache. When dimensioning

the set-associative cache, we need to decide what level of associativity to use. Previous

work has demonstrated that higher cache associativity yields better cache hit-rates

[jain][li]. However, unlike a traditional exact set associative cache, in the case of the

digest cache, an increase in the degree of associativity must be accompanied by an

increase in the size of the flow identifier’s hash to compensate for the additional

probability of collision. If the digest is a c-bit hash, and we have a d-way set associative

cache, then the probability of cache misidentification is

 (22)

Equation 22 can be described as follows: Each cache line has d entries, each entry of

which can take 2
c
 values. A misclassification occurs whenever a new entry has

coincidentally the same hash value as any of the existing d entries. We must employ a

stronger hash to compensate for increasing collision opportunities (associativity).

Figure 14 graphs the number of flows that a 4-way set associative can store,

assuming different misclassification probability tolerances. The maximum number of

addressable flows increases linearly with the amount of memory and decreases

logarithmically with the packet misclassification rate.

2.4.2 Theoretical Comparison of Bloom Filters with Digest Caches

To achieve a misclassification probability of one in a billion, a Bloom filter cache

must use 30 independent hash functions to use memory optimally. This allows us to store

a maximum of kbloomcache flows in our cache,

www.manaraa.com

38

 ()

 ()
 (23)

where L = 30, the number of hash functions, M, the amount of memory in bits, and p, the

misidentification probability. To directly compare this with a digest cache, the maximum

number of flows that our scheme can store, independent of the associativity, is given by

 (24)

where the required number of bits in the digest function is given by

 ⌈ (⁄)⌉ (25)

This relation between kbloomcache and kdigest dependent on p, the misidentification

probability and d, the desired level of cache set associativity.

Figure 15 compares the storage capacity of both caching schemes. Both schemes

linearly relate storage capacity to available memory, but it is important to note that

simply storing a hash is more than 35% more efficient in terms of memory use than a

Bloom filter, for this application. One property that makes a Bloom filter a useful data

Figure 14: Maximum number of flows that can be

addressed in a 4-way set associative digest cache,

with different misclassification probabilities, p

Figure 15: Comparison of storage capacity of

various caching schemes. The Bloom filter cache

assumes a misidentification probability of one in a

billion, which under optimal conditions is modeled

by a Bloom filter with 30 hash functions.

www.manaraa.com

39

structure is its ability to insert an unlimited number of signatures into the data structure,

at the cost of increased misidentification. However, since we prefer a bounded

misclassification rate, this property is of no use to the solution to our problem.

2.4.3 A Specific Example of a Digest Cache

To illustrate the operation of a digest cache, we will construct an example

application of a digest cache. Consider a router with 16 interfaces and a set of

classification rules. We begin by assuming that we have 64KB of memory to devote to

the cache and wish to have a 4-way associative cache that has a misclassification

probability of one in a billion. These parameters can be fulfilled by a 32-bit digest

function, with 4 bits used to store per-flow routing information. Each cache entry is then

36 bits long, making each cache line 144 bits (18 bytes). 64KB of cache memory

partitioned into 18-byte cache lines, gives a total of 3640 cache lines, which allows our

cache to store 10920 distinct entries. A visual depiction of this cache is given in Figure

16.

Overview of Digest Cache:

entry 0 entry 1 entry 2 entry 3

entry 4 entry 5 entry 6 entry 7

Cache Line 0 {

Cache Line 1 {

Cache Line 3639 { entry 109116 entry 109117 entry 109118 entry 109119

Figure 16: An overview of 64KB 4-way set associative digest cache, with a misclassification probability of

1 in a billion. This cache services a router with 16 interfaces.

32-bit digest 4-bit route
Contents of cache

entry

www.manaraa.com

40

Now, consider a sample trace of the cache, which is initially empty. Suppose 2

distinct flows, A and B.

1. Packet 1 arrives from flow A.

a. The flow identifier of A is hashed to H1(A) to determine the cache line to

look up. That is, H1 is a map from flow identifier to cache line.

b. A is hashed again to H2(A) and compared to all four elements of the cache

line. There is no match. The result, H2(A), is the digest of the flow

identifier that is stored.

c. A is classified by a standard flow classifier, and is found to route to

interface 3.

d. The signature H2(A), is placed in cache line H1(A), along with its routing

information (Interface 3).

e. The packet is forwarded through interface 3.

2. Packet 2 arrives from flow A.

a. The flow identifier of A is hashed to H1(A) to determine the cache line to

look up.

b. A is hashed again to H2(A) and compared to all four elements of the cache

line. There is a match, and the cache indicates the packet should be

forwarded through interface 3.

c. The packet is forwarded through interface 3.

3. Packet 3 arrives from flow B.

a. The flow identifier of B is hashed to H1(B) to determine the cache line to

look up. Coincidentally, H1(A) = H1(B).

www.manaraa.com

41

b. B is hashed again to H2(B) and compared to all four elements of the cache

line. Coincidentally, H2(A) = H2(B). There is a false-positive match, and

the cache indicates the packet should be forwarded through interface 3.

The probability that this sort of misclassification occurs is approximately

4/2
32

 ≈ 10
-9

.

c. The packet is forwarded through interface 3.

In the absence of false-positive matches, this scheme behaves exactly as a 4-way set

associative cache with 14560 entries (3640 cache lines). Using an equivalent amount of

memory (64 KB) a cache storing IPv4 flow identifiers will be able to store 4852 entries

(1213 cache lines), and a cache storing IPv6 flow identifiers will be able to store 1744

entries (436 cache lines).

The benefit of using a digest cache is two-fold. First, it increases the effective

storage capacity of cache memory, allowing the use of smaller, faster memory. Second, it

reduces the memory bandwidth required to support a cache by reducing the amount of

data required to match a single packet. As intuition and previous studies would indicate, a

larger cache will improve cache performance [jain][li][partridge]. To that end, in this

example, the deployment of a digest cache would have the effect of increasing the

effective cache size by a factor of between 3 and 8.

2.4.4 Exact Classification with Digest Caches

Digest caches can also be used to accelerate exact caching systems, by employing a

multi-level cache (Figure 17). A digest cache is constructed, in conjunction with an exact

cache that shares the same dimensions (in number of cache lines and set associativity).

www.manaraa.com

42

While the digest cache only stores a hash of flow identifiers, the exact cache stores the

full flow identifier. Thus, the two hierarchies can be thought of as “mirrors” of each

other.

A c-bit, d-way set associative digest cache implemented in a sequential memory

access model will be able to reduce the amount of exact cache memory accessed (due to

cache misses) by a factor of

 (26)

while the amount of exact cache memory accessed by a cache hit is reduced by a factor of

 (27)

The intuition behind Equation 27 is that each cache hit must access the exact flow

identifier, while each associative cache entry has an access probability of 2
-c

. Note the

digest cache allows for multiple entries in a cache line to share the same value because

the exact cache can resolve collisions of this type. Since this application relies on hashing

strength only for performance acceleration and not for correctness, it is not necessary to

have as strong a misclassification rate.

Figure 17: A multi-level digest-accelerated exact cache. The Digest cache allows filtering potential hits

quickly, using a small amount of faster memory.

www.manaraa.com

43

A multi-level 8-bit 4-way set associative digest-accelerated cache will incur a 4-byte

first level lookup overhead. However, it will reduce second level memory access cost of

an IPv6-bit cache miss look up from 148 bytes to 37.4 bytes, and a cache miss look up

from 148 bytes to .6 bytes. Assuming a 95% hit rate, the average cost of cache lookups is

reduced to 4 bytes of first level cache and 35.6 bytes of second level cache.

2.5 Performance Evaluation of Approximate Caching Strategies

 Two network traces were used to evaluate the effectiveness of the proposed caching

strategies. Each of the two datasets represents a one-hour network trace. The first of the

datasets was collected by Bell Labs research, Murray Hill, NJ. This dataset was made

available through a joint project between NLANR PMA and Internet Traffic Research

Group [bell]. The trace was from a 9 Mb/s link, consisting only of IP traffic, serving a

staff of 400 people. The second trace was a non-anonymized trace collected at the OGI

Trace Length 3600 s

Number of Packets 974613

UDP Packets 671471

TCP Packets 303142

Number of Flows 32507

Number of TCP Flows 30337

Number of UDP Flows 2170

Avg. Flow Length 23.2654 s

Avg. TCP Flow Length 13.8395 s

Avg. UDP Flow Length 155.041 s

Longest Flow 3599.95 s

Avg. Packets/Flow 29.9816

Avg. Packets/TCP Flow 9.99248

Avg. Packets/UDP Flow 309.434

Max # of Concurrent Flows 268

Table 1: Bell Labs research trace

Trace Length 3600 s

Number of Packets 15607297

UDP Packets 10572965

TCP Packets 5034332

Number of Flows 160087

Number of TCP Flows 82673

Number of UDP Flows 77414

Avg. Flow Length 10.2072 s

Avg. TCP Flow Length 11.2555 s

Avg. UDP Flow Length 9.08774 s

Longest Flow 3600 s

Avg. Packets/Flow 97.4926

Avg. Packets/TCP Flow 60.8945

Avg. Packets/UDP Flow 136.577

Max # of Concurrent Flows 567

Table 2: OGI OC-3 trace

www.manaraa.com

44

OC-3c link. This link connects with Internet2 in partnership with the Portland Research

and Education Network (PREN). This trace captured a portion of an active Half-life game

server (an example of an interactive virtual world), whose activity is characterized by a

moderate number (~20) of long-lived small high packet-rate UDP flows. Table 1 and

Table 2 present a summary of the statistics of these two datasets. A graph of the number

of concurrent flows is shown in Figure 18. The Bell trace is much smoother, while the

OGI trace contains roughly twice as many concurrent flows.

For the purposes of our analysis, a bi-directional flow is considered as 2 independent

flows. A flow begins when the first packet bearing a unique 5-tuple (source IP address,

destination IP address, protocol, source port, destination port) arrives at the node. A flow

ends when the last packet is observed, or after a 60 second timeout. This number is

chosen in accordance with other measurement studies [fraleigh] and observations in the

field [iannaccone][mccreary].

Figure 18: Number of concurrent flows in test data sets

0

100

200

300

400

500

600

0 500 1000 1500 2000 2500 3000 3500

Nu
m

be
r o

f F
lo

ws

Time (seconds)

OGI Trace
Bell Trace

www.manaraa.com

45

As a reference benchmark, we introduce the idea of a perfect cache – a fully

associative cache, with an infinite amount of memory. This cache takes only the

theoretical minimum cache misses (compulsory cache misses). The fundamental

performance statistics are reported in Table 3. The Bell trace is characterized by having

more long-lived low-traffic flows, and so receives relatively few cache misses over a

given time interval. Despite this, the cache hit rate is just 97%, because of the relatively

few packets per flow there are. The OGI trace has roughly twice as many concurrent

flows, and is characterized by having higher-traffic, short lived flows. As a result, the

OGI trace has nearly 13 times as many cache misses, but achieves a cache hit rate of

99%.

For a comparison with exact caching schemes, we simulate a fully associative cache

using an LRU replacement policy. LRU was chosen because of its near-optimal caching

performance in networking contexts [jain]. This simulation is intended to represent best-

case exact caching performance, even though it is infeasible to implement a fully

associative cache on this scale.

2.5.1 Bloom Filter Cache Evaluation

For the reference implementations in this study, we use the SHA1 hash function

[sha]. It should be noted that the cryptographic strength of the SHA1 hash does not

 Bell Trace OGI Trace

Hit Rate 0.9714 0.9877

Maximum misses (over 100 ms intervals) 6 189

Variance of misses (over 100 ms intervals) 1.35403 17.4375

Average misses (over 100 ms intervals) 0.7749 5.8434

Table 3: The results of a perfect cache

www.manaraa.com

46

increase the effectiveness of our implementation, because the hashed result does not have

to be resistant to cryptographic inspection. Any universal hash functions will be equally

effective for this use [carter]. It is important to recognize that other, faster hashing

algorithms exist, and using a hardware-based hashing implementation is possible. For

example, the IXP1200 architecture [ixp] has a hardware hashing unit that is suitable for

this use, and can complete a hashing operation every nine clock cycles.

For the purposes of this study, we use a misclassification probability of 1 in a billion.

The reasoning behind this choice of misclassification probability is presented in Section

2.2.1. This misclassification rate should have a completely negligible effect on the utility

and performance of the network.

2.5.1.1 Bloom Filter Cold Caching Evaluation

With the Bell dataset, using 4 KB of cache memory and a misclassification

probability of 1e-9 the cold cache performs reasonably with respect to the overall cache

hit rate. The optimal dimensions for a Bloom filter this size should have 30 hash

Figure 19: Comparing cold cache and double-buffered bloom caches using 4 KB of memory (Bell dataset)

0

10

20

30

40

50

60

70

80

750 800 850 900 950 1000

C
a
c
h
e
 M

is
s
e
s

Time (seconds)

Cold cache Bloom filter aging intervals

Cold cache Bloom filter cache misses

0

10

20

30

40

50

60

70

80

750 800 850 900 950 1000

C
a
c
h
e
 M

is
s
e
s

Time (seconds)

Double-buffered Bloom filter aging intervals

Double-buffered Bloom filter cache misses

www.manaraa.com

47

functions, storing a maximum of 611 flows. Throughout the 1-hour trace, there were no

misclassifications and an overall cache hit-rate of 95.1529%. Aggregated over 100ms

intervals, there were a maximum of 8 cache misses/100ms, with an average of 1.31668

and a variance of 10.3272.

Figure 19 illustrates the cache misses during a portion of the trace. We can see that

emptying the cache corresponds to a spike in the amount of cache misses that is not

present when using a perfect cache (Figure 20). This spike is proportional to the number

of concurrent flows at the time of cache flushing. This type of behavior will apply undue

pressure to the classification engine, resulting in overall performance degradation.

2.5.1.2 Bloom Filter Double-Buffering Cache Evaluation

Using a double-buffered approach can smooth the spikes in cache misses associated

with suddenly emptying the cache. Double-buffering effectively halves the amount of

immediately addressable memory, in exchange for a smoother aging function. As a result,

Figure 20: Cache Misses using a perfect cache (Bell dataset)

0

10

20

30

40

50

60

70

80

750 800 850 900 950 1000

C
a
c
h
e
 M

is
s
e
s

Time (seconds)

Perfect Cache

www.manaraa.com

48

this bloom filter was only able to store 305 flows for a 4096 byte cache, in comparison

with the 611 flows of the cold-cache implementation. This implementation also had a

slightly lower hit rate of 95.0412% with the Bell dataset. However, we succeeded in

reducing the variance to 5.43722 cache misses per 100ms, while maintaining an average

cache miss rate of 1.34251 per 100ms. Reviewing Figure 19, we can see that the

correspondence between cache aging states and miss rates does not correspond to

performance spikes as prevalently as in the cold cache implementation.

This implies that the double-buffered approach is an effective approach to smoothing

out the performance spikes present in the cold cache algorithm. To better quantify the

“smoothness” of the cache miss rate, we graph the variance, and average miss rates

(Figure 21 and Figure 22). From these graphs, we observe that for a memory-starved

system, the cold-cache approach is more effective with respect to cache hit-rates. It is

surprising how effective this naïve caching strategy is, with respect to overall cache

performance. Moreover, we note that it performs better than both an IPv6 and IPv4 exact

Figure 21: Cache hit rates as a function of memory, M

20

40

60

80

100

120

140

1000 10000 100000

H
it
 r

a
te

 (
%

)

Amount of cache memory (in bytes)

Bell Trace, Perfect Cache

Bell Trace, Double-Buffered

Bell Trace, Cold Cache

Bell Trace, Pure LRU (IPv4)

Bell Trace, Pure LRU (IPv6)

20

40

60

80

100

120

140

1000 10000 100000

H
it
 r

a
te

 (
%

)

Amount of cache memory (in bytes)

OGI Trace, Perfect Cache

OGI Trace, Double-Buffered

OGI Trace, Cold Cache

OGI Trace, Pure LRU (IPv4)

OGI Trace, Pure LRU (IPv6)

www.manaraa.com

49

cache, with both datasets for a memory starved cache, and keeps pace as memory

improves. As the amount of memory increases, we can see that the double-buffered

approach is slightly more effective in reducing the number of cache misses.

Looking to Figure 23, we observe that the variance in miss rates decreases much

faster in the double-buffered case than in the cold-cache approach. This is because of the

removal of cache miss “spikes” that occur during cache flushing, due to the need to

suddenly repopulate the cache. It is interesting to note that in the OGI trace, the variance

actually increases, before it decreases. Comparing Figure 22 and Figure 23, this implies

that for a very memory-starved system, the variance is low because the cache miss rate is

uniformly terrible.

Comparing the double-buffered approximate cache implementation to exact caching

gives comparable performance when considering an IPv4 exact cache even though the

approximate approach can cache many more flows. This is due to the imprecision of the

aging algorithm – an LRU replacement policy can evict individual flows for replacement,

Figure 22: Average cache misses as a function of memory, M (aggregate over 100ms timescales)

0.1

1

10

100

1000

1000 10000 100000 1e+06

A
v
e
ra

g
e
 m

is
s
 r

a
te

 (
a
g
g
re

g
a
te

 o
v
e
r

1
0
0
m

s
 i
n
te

rv
a
ls

)

Amount of cache memory (in bytes)

Bell Trace, Cold Cache

Bell Trace, Double-Buffered

Bell Trace, Perfect Cache

0.1

1

10

100

1000

1000 10000 100000 1e+06

A
v
e
ra

g
e
 m

is
s
 r

a
te

 (
a
g
g
re

g
a
te

 o
v
e
r

1
0
0
m

s
 i
n
te

rv
a
ls

)

Amount of cache memory (in bytes)

OGI Trace, Cold Cache

OGI Trace, Double-Buffered

OGI Trace, Perfect Cache

www.manaraa.com

50

whereas a double-buffered approach must evict ½ of the cached flows at a time.

However, when considering IPv6 data structures, this disadvantage is overshadowed by

the pure amount of storage capacity a Bloom filter can draw upon.

In all of these experiments, the behavior of each of the systems approaches the

theoretical optimum cache performance as memory increases. This implies that our

algorithm is correct and does not suffer fundamental design issues.

2.5.2 Digest Cache Performance Evaluation

The digest cache presented in this evaluation was chosen to be a four-way set

associative hash table, using 32-bit flow identifier digests. Each lookup and insertion

operation requires a single 16-byte memory request. An LRU cache replacement

algorithm was chosen, due to its low cost complexity and near-optimal behavior [jain].

Figure 24 graphs the behavior of digest caches with different set associativities. By

increasing the level of set-associativity of the cache, thrashing is reduced because of the

reduction in cache contention. However, increasing the level of set-associativity also

Figure 23: Variance of cache misses as a function of memory, M (aggregate over 100ms timescales)

1

10

100

1000

10000

1000 10000 100000 1e+06

V
a
ri

a
n
c
e
 o

f
m

is
s
 r

a
te

 (
a
g
g
re

g
a
te

 o
v
e
r

1
0
0
m

s
 i
n
te

rv
a
ls

)

Amount of cache memory (in bytes)

Bell Trace, Cold Cache

Bell Trace, Double-Buffered

Bell Trace, Perfect Cache

1

10

100

1000

10000

1000 10000 100000 1e+06

V
a
ri

a
n
c
e
 o

f
m

is
s
 r

a
te

 (
a
g
g
re

g
a
te

 o
v
e
r

1
0
0
m

s
 i
n
te

rv
a
ls

)

Amount of cache memory (in bytes)

OGI Trace, Cold Cache

OGI Trace, Double-Buffered

OGI Trace, Perfect Cache

www.manaraa.com

51

increases the amount of memory required to support that level of associativity, as well as

the amount of cache memory that must be examined on each cache query operation. We

observe from the graph that the effective performance of the cache increases very little

after the level of set-associativity increases past four. This is consistent with other

experimental observation [li].

We also compare our cache against a traditional four-way set associative layer-4

IPv4 and IPv6 based hash tables. Each lookup and insertion operation requires a single

52-byte or 148-byte memory request, respectively. Hashing for all results presented in

this evaluation was accomplished with a SHA-1 hash [sha].As is with the Bloom filter

evaluation (Section 2.5.1), the cryptographic strength of the SHA-1 hash is not an

important property of an effective hashing function in this domain and it is sufficient that

it is a member of the class of universal hash functions [carter].

Figure 24: Hit Rates for digest caches, as a function of memory for various set associativity, assuming a

misclassification rate of 1 in a billion

65

70

75

80

85

90

95

100

1000 10000 100000

B
E

L
L
 T

r
a
c
e
 H

it
 R

a
te

 (
%

)

Amount of Cache Memory (Bytes)

35-bit Digest Cache (32-w ay associative)

34-bit Digest Cache (16-w ay associative)

33-bit Digest Cache (8-w ay associative)

32-bit Digest Cache (4-w ay associative)

31-bit Digest Cache (2-w ay associative)

30-bit Digest Cache (1-w ay associative)
0

20

40

60

80

100

1000 10000 100000

O
G

I
T

r
a
c
e
 H

it
 R

a
te

 (
%

)

Amount of Cache Memory (Bytes)

35-bit Digest Cache (32-w ay associative)

34-bit Digest Cache (16-w ay associative)

33-bit Digest Cache (8-w ay associative)

32-bit Digest Cache (4-w ay associative)

31-bit Digest Cache (2-w ay associative)

30-bit Digest Cache (1-w ay associative)

www.manaraa.com

52

2.5.2.1 Digest Cache Results

 In evaluating the performance of the caching systems, we must consider two

criteria; we must examine the overall hit-rate as well as the smoothness of the cache miss

rate. A cache that has large bursts of cache misses has low utility, because it places a

high amount of stress on the packet classification engine.

Figure 25 graphs the resulting hit rate of various caching strategies, using the sample

traces. As expected, the digest cache scores hit-rates equivalent to an IPv6 based cache

ten times its size. More importantly, the digest cache still manages to perform well when

compared with a Bloom filter cache. The digest cache yields an equivalent hit rate of a

cold-caching Bloom filter 50-80% its size, and out-performs a double-buffered Bloom

filter cache 2-3 times its size.

Figure 25: Cache hit rates as a function of memory, M . The Bell trace is on the left, the OGI trace is on the

right

40

50

60

70

80

90

100

1000 10000 100000

B
e

ll
 T

ra
c
e

 H
it
 R

a
te

 (
%

)

Amount of Cache Memory (Bytes)

Digest Cache (4-way associative)

Bloom Cache (Cold)

Bloom Cache(double buffered)

Exact Cache (IPv4 4-way associative)

Exact Cache (IPv6 4-way associative)

Perfect Cache

0

20

40

60

80

100

1000 10000 100000

O
G

I
T

ra
c
e

 H
it
 R

a
te

 (
%

)

Amount of Cache Memory (Bytes)

Digest Cache (4-way associative)

Bloom Cache (Cold)

Bloom Cache(double buffered)

Exact Cache (IPv4 4-way associative)

Exact Cache (IPv6 4-way associative)

Perfect Cache

www.manaraa.com

53

Figure 26 graphs the variance of cache miss rates of the different caching

approaches, aggregated over 100ms intervals. As can be observed from the two traces, a

digest cache gives superior performance, minimizing the variance in aggregate cache

misses. For extremely small cache sizes, the digest cache exhibits a greater variance in

hit rate than almost all other schemes. This can be attributed to the fact that the other

algorithms, in this interval, behave uniformly poor by comparison.

As the cache size increases, this hit rate performance improves, and the variance of

cache miss rates decreases to a very small number. This is an important observation

because it implies that cache misses in these traces are not dominated by bursty access

patterns, which would place a high amount of pressure on the packet classifier.

To consider a more specific example, we have constructed a 2600 byte 4-way set

associative digest cache. This number was chosen to be coincidental with the amount of

Figure 26: Variance of cache misses as a function of memory, M (aggregate over 100ms time scales). The

Bell trace is on the left, the OGI trace is on the right .

1

10

100

1000

1000 10000 100000

B
E

L
L

 T
ra

c
e

,
V

a
ri
a

n
c
e

 o
f

M
is

s
s
e

s

Amount of Cache Memory (Bytes)

Digest Cache (4-way associative)

Bloom Cache (Cold)

Bloom Cache(double buffered)

Exact Cache (IPv4 4-way associative)

Exact Cache (IPv6 4-way associative)

10

100

1000

10000

1000 10000 100000

O
G

I
T

ra
c
e

,
V

a
ri
a

n
c
e

 o
f

M
is

s
s
e

s

Amount of Cache Memory (Bytes)

Digest Cache (4-way associative)

Bloom Cache (Cold)

Bloom Cache(double buffered)

Exact Cache (IPv4 4-way associative)

Exact Cache (IPv6 4-way associative)

www.manaraa.com

54

local memory available to a single IXP2000 family micro-engine [ixp]. Figure 27

presents a trace of the resulting cache miss rate, aggregated over one-second time

intervals. This graph represents the number of packets a packet classification engine must

process within one second to keep pace with the traffic load. As can be observed from the

plot, a packet classification engine must be able to classify roughly 60 packets per second

(pps) in the worst case for the Bell trace, and 260 pps in the worst case for the OGI trace.

Average packet load during the entire trace is 270.7 and 4335.4 pps for the Bell and OGI

traces respectively. The peak packet rate for the Bell trace approached 1400 pps, while

the peak rate for the OGI trace exceeds 8000 pps.

By employing a 2600 byte digest cache, the peak stress level on the packet

classification engine has been reduced by a factor of between 20 and 30 for the observed

traces.

Figure 27: Cache miss rates aggregate over 1 second intervals, using a 2600 byte 4-way set associative

digest cache. The Bell trace gave a 95.9% hit rate, while the OGI trace achieved a 97.6% hit rate.

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500 3000 3500

N
u

m
b

e
r

o
f
c
a

c
h

e
 m

is
s
e

s
 o

v
e

r
1

 s
e

c
o

n
d

 i
n

v
e

rv
a

ls

Time since start of trace (seconds)

Bell Trace

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500

N
u

m
b

e
r

o
f
c
a

c
h

e
 m

is
s
e

s
 o

v
e

r
1

 s
e

c
o

n
d

 i
n

v
e

rv
a

ls

Time since start of trace (seconds)

OGI Trace

www.manaraa.com

55

2.5.3 Hardware Specific Implementation

A preliminary implementation on Intel’s IXP1200 Network Processor was

constructed, to estimate the amount of processing overhead an approximate cache would

add [ixp]. The IXP1200 has a 3-level memory hierarchy: scratchpad, SRAM and

SDRAM, each having 4KB, 16MB and 256MB respectively. Scratchpad memory is the

fastest of the three, but does not support queued memory access – subsequent scratchpad

memory accesses block until the first access is complete. The IXP micro-code allows for

asynchronous memory access to SRAM and SDRAM. The typical register allocation

schema allows for a maximum of 32 bytes to be read per memory access.

The hardware tested was an IXP1200 board, with a 200 MHz StrongARM, 6 packet-

processing micro-engines and 16 Ethernet ports. The implementation’s input buffers were

kept constantly filled, and we monitored the average throughput of the system. A simple

micro-engine level layer-3 forwarder was implemented as a baseline measurement. A

cache implementation was then grafted onto the layer-3 forwarder code base. A null-

classifier was used, so that we could isolate the overhead associated with the cache

lookup function. No aging function was used for the Bloom Filter caches. The cache was

placed into SRAM because the scratchpad does not support queued memory access which

prevents the multi-processing power of the IXP design to be used, and the SDRAM

interface does not support atomic bit-set operations which are needed to resolve

concurrency issues in the multi-processing design.

The performance of our implementation was evaluated on a simulated IXP1200

system, with 16 virtual ports. The implementation’s input buffers were kept constantly

filled, and we monitored the average throughput of the system. The Bloom Filter

www.manaraa.com

56

implementation was modified into two separate configurations to generate performance

results. The first configuration simulates a no-miss cache. Each packet processed by the

IXP would go through a full cache lookup with no shortcutting. Regardless of the result,

the packet would be processed without adding (or re-adding) its signature to the cache.

In the second implementation, an all-miss cache was also constructed. All processed

packets would always have their packet header digests added to the Bloom filter,

regardless of the result of the packet lookup. The design ensured that no flow identifier

was successfully matched, and each packet required an insertion of its flow ID into the

cache. The code was structured in a way to disallow any shortcutting or early negative

membership confirmation. This was done so that the worst possible performance of a

Bloom filter cache could be ascertained. In this manner, we can determine an upper and a

lower bound on the IXP’s performance, presented in Table 4. The trace was composed

entirely of small, 64-byte packets as is typical of virtual world update packets.

This implementation used the hardware hash unit. In this case, four hashes are as

computationally expensive to calculate as one, because we simply use different portions

of a single hashing result to implement multiple hash functions. This implementation

appears to be SRAM limited – in the logged traces, we often note that the SRAM access

queues are filled, stalling even asynchronous SRAM accesses.

Number of Hash Levels No-Miss Cache Throughput All-Miss Cache Throughput

0 990 Mb/s 990 Mb/s

1 830 Mb/s 770 Mb/s

2 772 Mb/s 748 Mb/s

3 740 Mb/s 733 Mb/s

4 612 Mb/s 605 Mb/s

Table 4: IXP implementation overhead for Bloom filter caches

www.manaraa.com

57

A digest-cache was also constructed. Using the experimental results as a guide, a

four-way set associative digest cache using 32-bit flow identifier digests placed in SRAM

was constructed. This implementation was able to maintain a sustained average no-miss

throughput of 803 Mb/s and all-miss throughput of 797 Mb/s. This implementation is

roughly equivalent to a Bloom Filter using two hash levels, which is an inefficient design

for a Bloom Filter using a targeting misclassification rate of one in a billion – ideally,

there would be 30 hash levels. Given a 16MB SRAM store, and a 1e-9 misclassification

rate, this Bloom filter could only store 2122 flow identifiers (Equation 23). A digest

cache with the same memory constraints could store 4194304 flow identifiers, and would

be easier to augment to store more flow meta-information, such as output routing

interface numbers, or NAT flow ID translation parameters.

The IXP is far from an ideal architecture to implement a Bloom filter in large part

due to its lack of small, high-speed bit-addressable on-chip memory. Ideally, a Bloom

filter would be implemented in hardware that supports parallel access on bit-addressable

memory [sanchez].

2.6 Conclusion

Online virtual worlds typically have different packet traffic distributions than the

majority of Internet traffic, and are characterized by having frequent small updates. To

help process the high packet-rate traffic generated by these applications, network devices

can employ a packet classification cache. In this chapter, we have proposed and explored

two different mechanisms for efficiently and effectively using memory, given a slightly

www.manaraa.com

58

relaxed accuracy requirement. Performance of any existing flow caching solution that

employ exact caching methods can be dramatically improved by employing these

techniques, at the sacrifice of a small amount of accuracy. With the deployment of IPv6

and the storage required to support the caching of its headers, such a trade-off will

become increasingly important. The digest caching solution proposed in this chapter is

able to service nearly an order of magnitude more flows than its exact-caching

counterpart by allowing a cache misclassification rate of one in a billion.

This technique can be applied to the design of a novel 2-level exact cache which can

take advantage of a hierarchical memory structure to accelerate exact caching algorithms.

By adding a small (approximately 1/40
th

 the size) digest cache to a more traditional n-

way set associative IPv6 cache, we can reduce the amount of exact cache memory that is

required to be accessed on a cache hit by 1/n, and by a cache miss to nearly 0.

The digest caching approach is superior to the Bloom filter approximate caching

algorithm, in both theoretical and practical performance while also addressing the

shortcomings in the Bloom Filter cache design without introducing any additional

drawbacks.

2.7 Future Work

The work presented in this chapter assumes that memory used to support the packet

classification cache is homogeneous, or in the case of using a digest cache as an

acceleration structure for an exact cache, potentially using two different kinds of memory

with different access speeds and sizes. There is room to be explored in modifying this

www.manaraa.com

59

algorithm to be better suited to taking advantage of heterogeneous memory types. If the

memory used to support the packet classification cache is accessed through a multi-level

cache (as would be the case in a modern CPU cache) it may be possible to reorganize the

cache to provide better spatial locality so that the multi-level cache is more effective. It

may also be possible to use different kinds of memory, such as content addressable

memory to accelerate this algorithm.

www.manaraa.com

60

Chapter 3 Terrain Data Representation and Streaming

Virtual reality systems [active][croquet][gearth][wwind][wow][sl] have risen in

popularity with readily available high-speed networking and affordable consumer

computer graphics processing hardware. However, the deployment of networking

hardware has not kept pace with the increasing quality, quantity and complexity of

visualization data. Even with these advances, the increasing level of detail of virtual

environments can easily consume any additional gains in bandwidth. In a virtual world or

client/server video game, world information such as buildings, map and terrain are stored

in a remote central server. Clients or players connecting to the virtual space will need to

download the virtual world in a manner that maximizes interactivity – the world should

be progressively streamed to minimize pre-buffering delay and should quickly converge

to a high-quality scene rendering. In a large dynamic virtual world, the environment data

must be downloaded on-demand, rather than before runtime, because the data can be

prohibitively large and constantly changing.

To provide a high quality interactive experience for the user, we need to devise

techniques and algorithms that are aware of networking limitations to deliver a maximal

quality model of the world for the remote viewing client to render in as short a time as

possible. These models should be transmitted progressively, in a compact form that

allows the quality of the models to increase as time goes forward and more data is

transferred. To best prioritize the portions of graphical data to send, the server should

consider the remote client’s viewpoint.

www.manaraa.com

61

It is important to realize that streaming virtual world information cannot use

traditional video streaming algorithms. In a video stream, the data is quality-adaptive to

available bandwidth, but is relatively constant in data rate and the data can be discarded

after the user has viewed that portion of video. Video streaming has a more constant cost,

in terms of network bandwidth requirements. In a virtual world context, data that is sent

to the client can be cached and used for future use as the user explores and revisits that

section of the world, only needing to update the cache when the world changes.

Streaming data for virtual worlds will not require as much bandwidth after the user has

finished downloading all the data about their surrounding environment.

Streaming computer graphics data is challenging because of the need to retrieve

large triangle meshes before any display can begin. In this chapter, we focus on the

streaming delivery of terrain data for remote viewing. Figure 28 shows a scene with a

rendered terrain for viewing by a user and Figure 29 shows the underlying triangle mesh

that represents the height field of that terrain. Due to bandwidth limitations, it is not

possible to send the triangle/height field data all at once, and so we need to carefully

choose what data to send to the client and how to prioritize the data that we do send. To

Figure 28: Screenshot of a terrain fly-through

Figure 29: Underlying rendered geometry

www.manaraa.com

62

achieve maximal quality remote rendering, two key techniques should be employed:

First, distant terrain details and data that are outside the user’s viewing frustum should be

transmitted with a low priority. Second, terrain data that has a larger impact on the

client’s view, such as rocky terrain with many distinguishable features and areas nearer

the viewer, should be streamed to the client with high priority.

This thesis proposes borrowing techniques from the lossy image compression

domain to implement a novel technique of progressive terrain streaming over a network.

By using a progressive streaming format to represent the height fields for terrain data,

this approach allows client viewers to begin rendering the visual field almost immediately

while capturing the essence of the terrain being represented. As the visualization

progresses, more detail is streamed to a viewing client to improve the rendering accuracy

of the scene. Using the Grand Canyon terrain data set [usgs], we compare the efficacy of

using an approximate-algorithm based approach with a lossless terrain streaming

algorithm. Our results show that we can present the user with a high quality interactive

experience with smaller delay than would be possible using an exact-representation

approach.

The goal of this work is to provide a quality-aware framework for remote 3-D

rendering of height fields in a client/server model. In this study, the basic assumptions for

modeling the interactive virtual world system are that local storage and computing power

are large relative to network bandwidth, the network is reliable, and the network delivers

all packets with minimal latency. These assumptions are chosen to reflect the goal of this

research – to construct an algorithm that can deliver a high-quality 3D reconstruction of a

terrain over constrained network infrastructure. The architectural model we follow is to

www.manaraa.com

63

construct a single server and client. The server stores all the world data and transmits it to

the client in a quality-aware manner. The client is responsible for rendering the scene and

sending viewer update information to the server.

Section 3.1 explores related work in the areas mesh simplification, and network

streaming computer graphics. Section 3.2 outlines an experimental framework for

evaluating the efficacy of a terrain streaming algorithm. Section 3.3 describes non-

streaming reference algorithms, from which to compare the performance of proposed

algorithms. Section 3.4 gives an exact-representation terrain streaming algorithm. Section

3.5 proposes and evaluates various strategies for an approximate algorithm approach to

the terrain streaming problem.

3.1 Related Work

In practice, to display terrain data to a viewer, terrains are rendered to a display as

triangle meshes (Figure 29). This is often a large amount of information, which is too

dense for a computer’s graphics hardware to render in real-time.

From the computer graphics field, a significant amount of work has been done to

allow variable level-of-detail (LOD) rendering to alleviate the burden on computer

graphics hardware, using progressive meshing techniques. Most of the work in this area

focuses on arbitrary 3-dimensional meshes, as opposed to specific optimizations for

height fields, which are explored in this chapter. Moreover, the viewer’s perspective is

usually not taken into account, resulting in suboptimal viewer-independent streaming

algorithms [allies][chen][isenburg]. These techniques are done only to reduce the burden

www.manaraa.com

64

on the local graphics rendering hardware and cannot easily be adapted to rendering

partial data, view-dependent refinement, and data that needs to be transmitted across a

limited-bandwidth network to render.

When dealing with triangle-based meshes, one technique to simplify the overall

geometrical complexity of a model is to use triangle decimation [schroeder]. This

technique simplifies triangle-based meshes by combining adjacent triangles into a single

larger and simpler triangle. For local real-time terrain rendering, this triangle-decimation

technique has been adapted so that a terrain mesh can be simplified in real-time, termed

“Real-time Optimally Adapting Meshes” (ROAM) [duchaineau][turner]. This approach

organizes data into a binary triangle tree that allows progressive refinement of the data by

visiting deeper nodes of the tree. By balancing the triangle rendering budget with the

estimated visual importance of refining a specific area of the triangle mesh, a simplified

viewer-adapted mesh representing the terrain can be rendered in real-time.

A network-aware transport protocol has been shown to significantly improve the

speed and quality of progressive streaming in image data by explicitly modelling packet

loss and performing out-of-order data processing [raman]. This approach improves the

latency of progressive refinement. However, it does not consider view-dependent

prioritization of regions of interest which can be inferred from an understanding of the

three dimensional nature of the streaming data.

Several systems have been implemented for the streaming of computer graphics data.

Second Life [sl] is a massively multiplayer online dynamic virtual world that allows users

to explore a large three-dimensional space, where players can create, interact with, and

exchange virtual items. Objects are described using a primitive constructive solid

www.manaraa.com

65

geometry model. Terrain and map information are sent in 16x16 tiles using a non-

progressive JPEG-like encoding. In Second Life, the tiles are frustum-culled, so that only

potentially visible tiles are sent, and tiles closest to the viewer are delivered first. This

terrain encoding is not very efficient and is described in more detail in Section 3.3.1.

These encoded tiles are used to render the terrain using a simple triangle-splitting

algorithm based on an exponential distance metric. In OpenSimulator (Second Life’s

open-source counterpart), tiles are sent in row-major order (typewriter fill) with no

consideration to the viewer’s location or orientation [opensim].

In its original incarnation, Google Earth, a client/server virtual mapping program,

used a similar approach, using frustum-culled non-progressive terrain-tile streaming

system. Unlike Second Life, the streaming algorithm did not prioritize tiles based on the

proximity to the viewer, sometimes resulting in distant terrain geometry being sent before

nearby terrain data.

For streaming terrain, multi-resolution bitmaps for progressive rendering have also

been employed. The data can be organized in a quad-tree structure, with each child node

representing a refinement of one-quarter of the space [reddy]. This approach only

considers viewer’s location into account when streaming, without considering the visual

importance of the existing geological features in the data. This approach has been

extended by considering terrain complexity and culling terrain tiles outside the viewer’s

frustum, but not by prioritizing information based on viewer distance [tsai].

 The strip mask approach to terrain streaming scheme divides the terrain into square

tiles, attempting to pre-cache visible areas around the viewer [pouderoux]. This approach

tries to minimize computational complexity for CPU-constrained devices by compiling

www.manaraa.com

66

terrain patches into display lists which can be quickly re-rendered by graphics hardware

on successive frames. There is no data compression used in this approach, and

progressive refinement is accomplished through sending triangle strips representing a

new refinement level. More detail geometry can only be added on a per-patch basis, not

on a per-vertex basis.

3.2 Framework for Experimental Evaluation

To evaluate the performance of a terrain streaming algorithm, we have constructed a

simulated client viewing a fly-through of a landscape streamed from a remote server.

This gives us the ability to analyze the visual quality of the streaming simulation, as

viewed by a real interactive user (Figure 28). The client is implemented in OpenGL,

rendering various fly-throughs of the terrain, in a 640 x 480 viewport. The rasterized

output rendering by the client is recorded at 25fps and captured video rendering is

compared with a reference ideal video rendering. The reference ideal video rendering is

constructed by pre-downloading the entire terrain dataset, and rendering the fly-through

in full quality, without any LOD simplification.

The results of these simulations are compared with this reference ideal video

rendering using the peak signal to noise ratio (PSNR) metric. This PSNR metric will

represent the visual quality of the streamed simulation compared to its exact fully-

detailed representation. PSNR metrics are commonly used to measure the quality of

video and image reconstruction when employing lossy compression codecs and is

calculated by comparing a lossy reconstruction of an image and its original, and is

www.manaraa.com

67

represented using a logarithmic scale expressed in decibels (dB). Given an original

image, A, which is m × n pixels in size, and reconstructed image, B, the mean squared

error, MSE, is

∑ ∑()

 (28)

where ai,j is the color value of pixel i,j of image A and bi,j is the color value of pixel i,j of

image B. Then PSNR is defined as

 (

) (29)

where R is the maximum pixel value. In the case of an 8-bit image, R = 255.

The reference trace is constructed by running the simulation using a full-detail

(unlimited network bandwidth with zero latency) rendering of the fly-through.

Subsequent simulations are compared with this reference trace using the PSNR metric

which represents the visual quality of the streamed rendering.

3.2.1 Underlying Network Assumptions

The experimental framework is completely simulated in a stand-alone executable –

the simulation models a network with zero latency and a bandwidth of 56kbps. Given our

25fps capture rate, this effectively allows 380 bytes of data to be delivered between

frames. The choice of a 56kbps stems from the idea that terrain data should only consist

of a portion of a true virtual simulation’s network stream. In a realistic scenario the data

stream would include information such as objects, vehicles, buildings, textures and

avatars, which sometimes must be transferred using a limited-bandwidth mobile wireless

network link [blue].

www.manaraa.com

68

This simulation deals only with terrain geometry. Texture, material and lighting

information is not sent. In practice, this information can be generated procedurally. In

such approaches, texture is inferred from the terrain geometry and need not be sent over

the network.

3.2.2 Simulation Dataset

The simulation dataset used in this set of experiments is the Grand Canyon dataset

from The U.S. Geological Survey (USGS) with processing by Chad McCabe of

Microsoft Geography Product Unit [usgs]. The subset of this dataset used for simulation

was based on a 2048x2048 grid with 8-bit height posts (Figure 30), representing an area

of roughly 15000 km
2
. This dataset was chosen because it expresses many characteristics

of importance when considering terrain data, such as rocky mountainous regions, cliffs,

canyons, and relatively flat plains. To test the streaming framework, we designed three

representative walk-throughs to measure the performance of the various algorithms under

different scenarios.

Figure 30: USGS dataset of the Grand Canyon. The height field information is on the left (lighter shades

represent higher altitude) and lighting information is on the right.

www.manaraa.com

69

The simplest terrain flythrough simulation we use simply crosses the simulated grid

diagonally from corner to corner (Figure 31). This crossing is accomplished over 2048

rendered frames. The second flythrough also traverses the terrain from corner to corner

(Figure 31). This flythrough is augmented by pausing in the center of the map to rotate

the viewer 360 degrees. This requires the streaming system to cope with a changing

client orientation. The total length of this simulation is 2768 frames. The third walk-

through traverses the grid diagonally while continually panning over the terrain (Figure

Figure 31: The three flythrough test scenarios. The arrows represent the path and direction of the viewer

over the terrain.

www.manaraa.com

70

31) over 2048 frames. This is the most demanding of the three walk-throughs, requiring

the streaming solution to adapt to a constantly changing viewer location and orientation.

3.3 Reference Algorithms

Before considering any terrain streaming solution, it is important to first construct

reference implementations in order to evaluate the efficacy of any proposed terrain

streaming algorithms.

3.3.1 Non-Streaming Reference Algorithms

A very simple and naïve compression algorithm is to down-sample the entire

2048x2048 dataset to 64x64 (4KB of uncompressed data, less than 3KB of lossless PNG

compressed data) (Figure 32). This can be transferred in approximately half a second

with a 56.6 kbps connection. Instead of progressively streaming the terrain data from the

server to the client, this first reference implementation simply pre-loads the simplified

representation of the terrain at the viewer, and renders this terrain. Data points between

Figure 32: Visual representation of input terrain data (left) down-sampled to a 64x64 image (right).

www.manaraa.com

71

samples are linearly interpolated to recover a 2048x2048 terrain dataset. If the dataset is

treated as an 8-bit greyscale image, compared to the original raw dataset, this

compression gives us a PSNR of 23.7015 dB. This algorithm represents the simplest, near

worst-case performance simulation. The result of the simulation when conducted with

this algorithm is graphed as 64x64 in Figure 33. In flythrough #1 and #2, the PSNR

trends towards infinity towards the end of the simulation because the viewer travels

passed the end of the terrain and there is no more data to display. In this case, the

simulation displays the (lack of) data perfectly.

A less naïve approach would be to encode the entire terrain data set using JPEG

greyscale image compression, with each of the height posts encoded as an 8-bit

luminosity value. The JPEG encoding of the entire 2048x2048 Grand Canyon dataset,

using a quality encoding level of 100 (maximum quality), compressed as a collection of

32x32 tiles, resulted in 1245870 bytes (1216KB) of data with a PSNR of 59.7080 dB. If

the entire dataset is not subdivided into tiles, and encoded as a single JPEG file, the

output file size is 985 KB. This means that encoding overhead incurred by tiling the data

is roughly 20%. The importance of representing the terrain as a collection of tiles will be

explored in Section 3.5.

The result of the simulation using this non-streaming approximate reconstruction is

graphed as jpeg-full100 in Figure 33. This simulation is representative of a near-ideal

terrain representation, with minimal loss of fidelity. The results are very good – the

PSNR of the measured simulation indicates that it continually maintains a high-quality

rendering.

www.manaraa.com

72

(1) Flythrough

(2) Flythrough, pausing at the midpoint to perform a 360˚ pan

(3) Flythrough with a continuous 360˚ pan

Figure 33: Simulation results for non-streaming algorithms. Frame number is on the X axis. The

rendering quality of the frame (PSNR in dB) is on the Y axis. Higher values are better.

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

P
S
N

R
 (

d
B
)

Frame Number

jpeg-full100

jpeg-full95

64x64

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600

P
S
N

R
 (

d
B
)

Frame Number

jpeg-full100

jpeg-full95

64x64

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

P
S
N

R
 (

d
B
)

Frame Number

jpeg-full100

jpeg-full95

64x64

www.manaraa.com

73

If the same JPEG compression technique is used with a JPEG encoding quality value

of 95, a comparison of the original data yields a PSNR of 53.7115dB, using a 746550

byte (729KB) approximate representation of the terrain. The result of this simulation is

graphed as jpeg-full95 in Figure 33. As expected, the more compact representation of the

terrain data yields a simulation that performs slightly worse than jpeg-full100, but more

crucially, yields a simulation trace that performs with a PSNR quality metric of no less

than 35 dB, which is nearly human indistinguishable from a perfect representation. Figure

34 shows a visual representation of how the image deterioration appears for a 35 dB

(PSNR) signal. As can be seen in these figures, the difference is minimal. Artifacts of the

lossy compression typically manifest themselves at the edges of sharp elevation changes

(such as mountains, cliffs, and rocky hill-sides) due to DCT quantization. In JPEG

compression, the high-frequency DCT coefficients are quantized to achieve high levels of

compression.

For comparison of coding efficiency, using the 2048x2048 Grand Canyon dataset

(4096 KB uncompressed) was only compressed to 3533 KB using Second Life’s terrain

encoding algorithm [sl]. A PSNR difference of 57.9752 dB was measured between the

Second-life encoded terrain data, and the original uncompressed data. The Second Life

terrain encoding system does not yield a very high compression ratio (1.16:1), even when

compared to JPEG at quality level 100 (3.37:1). Despite this compression-rate disparity,

it does not seem to give a better representation of the terrain data either (PSNR of

57.9752 dB) compared to JPEG at quality level 100 (PSNR of 59.7080 dB).

www.manaraa.com

74

3.4 Exact Representation Terrain Streaming Algorithms

Before any lossy compression algorithm can be considered, it is important to

understand the limits of what an exact algorithm solution are. To this end, a lossless

terrain streaming algorithm has been constructed, based on the ROAM adaptive meshing

algorithm [duchaineau]. While ROAM was originally designed for mesh simplification in

order to minimize the number of simultaneous rendered triangles, it can be modified for

network streaming by allowing ROAM to only introduce refinement triangles without

removing previously rendered high-detail triangles. The goal of this reference

Figure 34: Example showing the degradation in a 35.0dB PSNR rendering. Top Left: Image captured with

full-detail terrain representation. Top Right: Reconstruction using compressed approximate terrain

representation. Bottom: Pixel difference of both images.

www.manaraa.com

75

implementation is to represent the result of employing an intelligent streaming algorithm

using a verbose, non-lossy data representation.

ROAM employs a triangle decimation technique for expressing more detail in a

triangle-based mesh – triangles are repeatedly and recursively split into right-angle

isosceles triangles to add additional vertices. In the coarsest representation, a ROAM

patch is represented by two triangles. To render a more detailed mesh, a triangle may be

split into two children triangles, introducing an additional vertex (Figure 35). Triangles

are always split in pairs, to prevent the formation of T-junctions – visual cracks in the

triangle mesh, formed when two neighboring triangles are rendered at incompatible detail

levels.

In practice, a ROAM terrain mesh is represented in memory by a binary tree, with

each node representing a triangular area. Each triangle is in turn represented by two

smaller triangles that form the descendants of each node. This data structure is referred to

Figure 35: The recursive splitting of triangles in a ROAM terrain patch (overhead view). This example

illustrates progressive refinement to add detail to the upper right-hand of the tile. Each vertex represents a

rendered height post.

www.manaraa.com

76

as a binary triangle tree (BTT). The BTT is constructed so that travelling down the

branches of the tree represents progressive refinement of the terrain mesh, with each step

increasing the visual detail that is presented to the user.

In the implementation presented in this chapter, there are two BTTs representing the

ROAM-encoded terrain mesh – one on the server, and one on the client. Initially, the

server’s BTT will be fully populated with the full terrain geometry, while the client’s

BTT will contain only the coarsest representation. Over the course of the simulation, the

client populates its BTT until the server’s entire BTT is transmitted, at which point the

entire terrain can be rendered from cache without the need to query the network. The

server constructs a BTT node/vertex stream to send to the client, based on the viewer’s

location and orientation, using a distance-variance metric for vertex prioritization. This is

similar to the way standard ROAM implements progressive refinement.

BTT node/vertex streaming priority is calculated by finding the variance in height of

all the child vertices and dividing by the distance of the node from the viewer, forming a

score for each node in the terrain mesh. This score represents a measure of the visual

difference between the current terrain representation, and the fully-detailed terrain. Every

node that has not yet been transmitted is placed in a priority queue for streaming to the

client. The scores of the nodes that have not yet been transmitted are recalculated on each

frame of the simulation and reprioritized, to ensure that the most crucial data is sent to the

client.

www.manaraa.com

77

(1) Flythrough

(2) Flythrough, pausing at the midpoint to perform a 360˚ pan

(3) Flythrough with a continuous 360˚ pan

Figure 36: Simulation results for exact representation streaming algorithms. Frame number is on the X

axis. The rendering quality of the frame (PSNR in dB). Higher values are better.

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

P
S
N

R
 (

d
B
)

Frame Number

jpeg-full95

roammax

roam

64x64

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600

P
S
N

R
 (

d
B
)

Frame Number

jpeg-full95

roammax

roam

64x64

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

P
S
N

R
 (

d
B
)

Frame Number

jpeg-full95

roammax

roam

64x64

www.manaraa.com

78

It is important to note that this implementation is extremely server resource intensive

and impractical to deploy in a real-world system. This implementation serves only to

represent a best case exact representation streaming algorithm. Because the server must

mirror the state of the binary triangle tree of each client the server is streaming to, this

solution demands a significant amount of server resources to implement. This may also

present a potential synchronization problem if a client viewer is restarted using a

previously cached partially complete BTT.

The performance of the ROAM-based exact representation streaming algorithm is

illustrated as roam in Figure 36. This simulation counts each vertex as 4-bytes of data (1

byte for height, 3 bytes for XY positional information). This simulation represents the

effect of organizing the terrain data in a streaming-friendly manner, without applying any

compression. Although the quality of the rendering is easily recognized as imprecise to

the human eye, it represents a significant improvement over 64x64, the non-streaming

4KB reference algorithm.

 For comparison, we have also simulated roammax, which is the same algorithm, but

counts each vertex as only 1 byte of data (Figure 36). This value was chosen in

accordance with observed compression factors optimal under optimal conditions [alliez].

This four-fold improvement in compression results in a significantly increased image

quality – at times, it is almost impossible to differentiate between the original full-detail

rendering and the results of streamed simulations. This suggests that at this level, more

bandwidth is incredibly helpful in improving the quality of the experience.

The most significant feature of the ROAM-based algorithm is that it provides vertex-

level explicitness, allowing the streaming solution to add vertices/detail where they are

www.manaraa.com

79

needed most. This allows the information flow to be quickly adapted to account for

viewer location and orientation changes.

The rendering quality of the streaming algorithms in flythrough #3 tends to oscillate

with a period of 360 frames. This is because the viewer rotates through a 360º pan every

360 frames, and so begins viewing terrain that has been progressively refined in the

previous rotation cycle.

The ROAM-based streaming techniques exhibit “popping” artifacts – temporal

discontinuities formed by the sudden introduction of a new vertex to the terrain mesh.

These artifacts are not captured by our PSNR metric, but may prove distracting to the

viewer. The visual impact of these artifacts can be lessened by introducing new vertices

using a geomorphing technique to smooth the geometric transition between mesh

refinement levels [hoppe].

3.5 Approximate Terrain Representation Streaming Algorithms

The motivating observation of this research is that above a certain quality level,

human beings lack the ability to perceive changes in data quality. Any data that is sent

that exceeds this threshold is wasted. We address this problem by using an approximate

representation of the terrain geometry. The landscape (Figure 30) will be represented as a

collection of 2-dimensional tiled bitmaps. In this approach, height-fields will be

represented as image data and compressed using a greyscale JPEG [jpeg]. Thus, the pixel

luminosity in the image will relate linearly to the height at a given location on our map.

This representation will efficiently encode terrain data because terrain data is fairly

www.manaraa.com

80

smooth (modulo cliffs). The JPEG representation used in this chapter to represent height-

field data is an 8-bit grey-scale JPEG. Thus, each data point (height information) must be

expressed as an 8-bit integer value. To allow this 8-bit tiled bitmap to describe arbitrary

terrain, each tile can be given a scaling factor (difference between highest and lowest

point) and an offset (value of the lowest point).

The entire terrain is divided into smaller, square bitmaps and compressed using

JPEG encoding in progressive mode to allow progressive refinement as data is streamed

to the client. By representing the terrain as a collection of small tiles, instead of a single

large tile, this allows the server to send terrain information in varying levels of detail (or

even not at all if it is not visible to the user) for different areas of the landscape.

JPEG encoding is based on a discrete cosine transformation (DCT) which first

transforms two-dimensional data in the spatial domain to a frequency domain. The

frequency coefficients are quantized, which is why JPEG encoding is very compressible

and lossy. The quantizing factors are weighted to give a higher priority to high frequency

information over lower frequency information. This is because the human eye perceives

more detail in high-frequency information than smooth gradients. This observation is true

of both photographic images (such as edges of objects) and terrain features (such as the

shapes of mountains and cliffs).

For progressive JPEG encoding, DCT coefficients are grouped into different

refinement layers, with the first layers giving the low-frequency coefficients, and adding

detail with refinement layers that describe the higher-frequency coefficients. In our

implementation, each terrain tile is encoded into six progressive refinement layers (Figure

www.manaraa.com

81

37). As more terrain data is retrieved, the detail of the representation of the terrain

increases.

Tiles that are outside the viewer’s frustum are not transmitted to the client while

visible tiles are all transmitted using an equal share of the available bandwidth. By

employing JPEG compression, this solution explicitly trades accuracy of height field data

to benefit from a more compact representation. It is the goal of this work to find a

compact representation of the data that degrades the rendered visualization in a minimal

way, so that the difference is not perceivable to the human eye.

Figure 37: Top: Progressive refinement of a JPEG image. This image represents an actual land geometry

tile in the Grand Canyon simulation, with lighter shades representing higher elevation. Bottom: A side view

of the center cross section of the same map, undergoing progressive refinement.

www.manaraa.com

82

3.5.1 Simple Approximate Terrain Representation Approach

The first attempt at constructing an approximate algorithm for streaming terrains

uses a JPEG representation of the terrain information, using a compression quality level

of 95. From previous experiments (Section 3.3.1), this is the most compact JPEG

representation of the data that maintains a minimum rendered display quality of 35dB

(Figure 33), which is near the limits of human perception (Figure 34).

In this implementation, the entire terrain is divided into 64
2
 square bitmaps (terrain

tiles) and compressed using JPEG encoding in progressive mode to allow progressive

terrain refinement as data is streamed to the client (Figure 37). An initial 64x64 point

coarse representation is first sent to the viewing client before the streaming algorithm

begins. This representation is identical to the data used for the non-streaming 64x64

reference algorithm, which represents the worst-case performance of this approach.

If the streaming algorithm is able to fully download the entirety of the terrain data,

the performance becomes identical to the non-streaming jpeg-full95 reference algorithm

introduced in Section 3.3.1. jpeg-full95 represents the best-case performance of this

JPEG-based approach.

In the simplest version of this algorithm, all visible terrain tiles are streamed with

equal priority. Tiles that are outside the client’s viewing frustum are not downloaded to

the client. This approach is termed jpeg-nopri, and its simulation results are graphed in

Figure 38. In an extension to the jpeg-nopri algorithm, visible tiles are prioritized with

respect to their distance from the viewer and the size of the compressed tiles:

www.manaraa.com

83

 (1) Flythrough

(2) Flythrough, pausing at the midpoint to perform a 360˚ pan

(3) Flythrough with a continuous 360˚ pan

Figure 38: Simulation results for initial approximate representation streaming algorithms. Frame number

is on the X axis. The rendering quality of the frame (PSNR in dB). Higher values are better.

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

P
S
N

R
 (

d
B
)

Frame Number

jpeg-full95

jpeg

jpeg-nopri

roammax

roam

64x64

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600

P
S
N

R
 (

d
B
)

Frame Number

jpeg-full95

jpeg

jpeg-nopri

roammax

roam

64x64

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

P
S
N

R
 (

d
B
)

Frame Number

jpeg-full95

jpeg

jpeg-nopri

roammax

roam

64x64

www.manaraa.com

84

 (30)

The proximity of the tile to the viewer is used to determine its visual weight, while the

size of the compressed tile is used as a coarse metric to determine the tile’s geometric

complexity. The bandwidth from the server is divided among visible tiles in proportion to

the score yielded from Equation 30. The results of this approach are graphed as jpeg in

Figure 38. This prioritization is similar to the display-list streaming algorithm presented

by Pouderoux & Marvie [pouderoux]. However, their simplification model focuses on

using a multi-resolution strip mask display structure rather than highly-compressed

progressively refined terrain data and lacks the fine-grain streaming properties possessed

by the roam and roammax algorithms.

The server overhead for implementing these streaming solutions is much smaller

than the ROAM-based algorithms introduced in Section 3.4. This is because the

calculations for determining priority streaming order are coarser-grained and only require

a greatly simplified understanding of client state. The server only needs to keep track of

the viewer’s location and orientation in addition to the number of bytes already streamed

to each JPEG tile instead of the state of the client’s entire BTT. This drastically reduces

the demand on the server’s resources, making it an algorithm that is suitable to deploy on

production systems.

Both jpeg and jpeg-nopri perform well and, as expected, are bounded by the best and

worst case simulations (64x64 and jpeg-full95). Both approximate algorithms usually out-

perform the exact representation algorithms. Although jpeg-nopri can do better than jpeg

1

www.manaraa.com

85

when the view frustum mispredicts the future importance of JPEG tiles, the jpeg

algorithm usually gives slightly better in the worst cases because it prioritizes information

closer to the viewer.

The most surprising result of these two simulations is that the performance of jpeg

and jpeg-nopri behave very similarly. Further investigation revealed that the

prioritization implementation was weak – the streaming policy attempted to enforce byte-

level streaming prioritization fairness on a per-frame timescale. This policy did not allow

sufficient freedom for high-priority tiles to receive a significant larger share of available

bandwidth, so the prioritization metric was rendered nearly useless. Despite this lack of

intelligent streaming, approximate representation techniques always yield a better result

than the roam simulation, and almost always better results than roammax except in 3 key

areas:

1) The beginning of flythrough #1 and #2. Due to the lack of a good prioritization

mechanism, the JPEG-based algorithms are not able to quickly adapt to the

newly initialized viewer and prioritize the transmission of terrain information

closer to the viewer. ROAM’s vertex-level explicitness allows it to quickly send

the most important pieces of terrain data to the client. The superiority of the data

prioritization exhibited by the ROAM-based algorithms allowed them to deliver

the most relevant data to the client, in a smaller amount of time.

2) At frame 1450 of flythrough #2, the JPEG-based algorithm’s render quality drops

to the level of roam. At this point, a distant mountain range that is not visible for

the majority of the simulation rotates into view. Immediately prior to this event,

the terrain quality level was the same as jpeg-full95 – that is to say all visible

www.manaraa.com

86

tiles were fully downloaded. Investigation into this event revealed that when all

visible terrain tiles were completely downloaded, the JPEG-based streaming

implementations would arbitrarily choose information to stream. A more

appropriate use of bandwidth would have been to begin transmitting terrain

information that is important (ie. large mountain ranges) that are not immediately

visible to the viewer. The jpeg algorithm required almost 2 seconds to recover

from this misprediction. The superior data prioritization and fine-level

granularity in roam and roammax allow them to more quickly adapt to the

viewer’s changing field of view. This prioritization advantage allows the

roammax streaming algorithm to keep pace with the JPEG compressed stream in

some cases, despite using a less efficient data encoding.

3) During flythrough #3, the viewer’s camera is constantly being rotated. This is the

most detrimental case to the jpeg streaming algorithm. Because of the weak

prioritization metric it is unable to cope with the constantly changing view. The

high JPEG compression rate exaggerates the result of stream prioritization. The

results are better than roammax when the viewing areas of the terrain that have

previously been viewed (due to compression efficiency) but worse than roam

when the future tile importance is not correctly predicted.

The most significant result is that despite the lack of an intelligent prioritized

streaming technique, the JPEG based algorithms usually yield superior results to even the

roammax approach. This implies that a high compression rate is more important to the

visual quality of the simulation than intelligent prioritization of data. This phenomenon

will become more pronounced in systems with large network latency, due to less accurate

www.manaraa.com

87

prediction by the ROAM-based prioritization mechanism because the server will not be

able to react as quickly to changes in the position and orientation of the viewer. An

increased compression rate is effectively increasing the available bandwidth as more data

can be sent over any given time interval. However, a less accurate JPEG approximation

of the terrain also means that the simulation will not converge on as high of quality of

rendering as an uncompressed data stream because of the loss in data/signal quality. The

terrain will not be rendered as accurately as when all of the data has been transmitted

without loss.

During subjective examination of the rendered output, JPEG “ringing” artifacts are

not easily observed – the quality increase in the streaming simulation tends to be fast

enough that small inaccuracies are removed before they become too close and apparent to

the viewer. However, blocking artifacts from neighboring terrain tiles being rendered at

different detail levels can be distracting.

3.5.2 Prioritize Streaming for Approximate Terrain Representation

As an extension to the approximate streaming algorithms presented in Section 3.5.1,

this section explores the use of a more involved understanding of the progressive JPEG

image format. More specifically, progressive JPEG stores data in multiple refinement

layers with increasing quality. The base level refinement layer is equivalent to a JPEG

encoded with a low quality setting, with each layer improving the image (terrain data

representation) quality. A terrain tile can only be considered of uniform quality when an

entire refinement layer has been processed. With this in mind, we can construct a

streaming algorithm that calculates a tile’s priority based on a desired refinement level

www.manaraa.com

88

instead of the byte size of the terrain tile. This also simplifies the complexity of our

streaming protocol. Instead of streaming many terrain tiles simultaneously, we can

construct a protocol that sequentially streams JPEG refinement layers. This will

significantly reduce the amount of control information that the terrain streaming protocol

must synchronize.

We can also exploit our understanding of how the terrain data is used in order to

construct a better streaming algorithm. In this study, the goal is to have more accurate

terrain representation to promote a better visual experience from the perspective of a 3D

viewer. Details near the viewer are important because closer objects are visibly larger on

the viewer’s display. Terrain features that are far away from the viewer are

disproportionately important if they contribute to the landscape’s skyline – if the

silhouette of a distant mountain is absent or particularly soft, it can present a noticeable

display inconsistency.

The ROAM-based streaming algorithm accounts for these properties by considering

the deviation between the rendered terrain and the true terrain from the viewer’s

orientation and position, and then adding vertices as required. Unfortunately, a similar

solution is not possible using a JPEG-based streaming algorithm because vertex-level

granularity is not expressible. However, it is possible to apply a coarse approximation of

this streaming prioritization.

At each step in the rendering process, the position and orientation of the viewer is

known to the terrain streaming server, in addition to the maximum height of the features

in each terrain tile. A tile will contribute to the rendered skyline if the angle between the

viewer, the tile, and the horizon is greater than the tiles in front of and behind it (Figure

www.manaraa.com

89

39). Skylines are especially important to consider, because visually, disparity between the

true skyline and the rendered skyline are the easiest to notice by a human viewer, and this

inconsistency is well reflected in the PSNR evaluation metric.

Silhouette edges have a disproportionately important contribution to the overall

image accuracy because they guide our mental reconstruction of an object’s shape. Many

level-of-detail (LOD) simplification algorithms recognize this property [luebke]. A

prioritization algorithm that favors distant terrain features (terrain tiles) if they contribute

to the silhouette edge of the skyline will result in better quality terrain renders. This can

be approximated by calculating the angle between the viewer and the highest peak in

each terrain tile.

Whenever the viewer’s position changes, the angular distance of each tile with

respect to the horizon is recalculated, with greater angles representing tiles that are higher

on the client’s viewscreen. The list of visible tiles is sorted by angular distances to each

terrain tile’s peak to generate a ranking of tiles that are likely to contribute to the

landscape’s skyline. The terrain tile with the highest angular height is ranked first.

 Scenario 1 Scenario 2

Figure 39: Example: Two different streaming scenarios. In the first scenario, the more distant Hill B is

more likely to contribute to the rendered horizon. In the second scenario, the nearby Hill C is more likely to

contribute to the rendered horizon.

www.manaraa.com

90

These two metrics are inverted and multiplied to form a tile importance score:

√
 (31)

The square root of the result is taken because number of tiles that must be considered

grows roughly quadratically with the scale of the terrain we render (due to the two-

dimensional nature of a set of terrain tiles). A simple one-dimensional example is

presented in Figure 40.

Figure 40: Two scenarios demonstrating the results of the extended priority scoring in jpeg-ext. Note that

in this example, we do not take the square root of the priority score because we are only presenting a one-

dimensional example.

Scenario 1

1 2 3

4 5 6

Angular Height

Ranking
Viewer

Landscape
Distance From

Viewer 1 2 3 4 5 6 7

Importance Score
 1
 5 · 2
= .10

 3

 1
 4 · 5
= .05

 5

 1
 3 · 3
= .11

 2

 1
 2 · 6
= .083

 4

 1
 7 · 1
=.143

 1

 1
 6 · 4
= .042

 6 Importance Ranking

Scenario 2

2

1

3

4 5 6

Angular Height

Ranking Viewer

Landscape
Distance From

Viewer 7 3 6 5 4 2 1

 1
 5 · 1
= .2

 1

 1
 4 · 5
= .05

 5

 1
 3 · 3
= .111

 2

 1
 2 · 6
= .083

 3

 1
 7 · 2
= .071

 4

 1
 6 · 4
= .042

 6

Importance Score

Importance Ranking

www.manaraa.com

91

 (1) Flythrough

(2) Flythrough, pausing at the midpoint to perform a 360˚ pan

(3) Flythrough with a continuous 360˚ pan

Figure 41: Simulation results for approximate representation with more intelligent prioritized streaming

algorithms. Frame number is on the X axis. The rendering quality of the frame (PSNR in dB). Higher

values are better.

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

P
S
N

R
 (

d
B
)

Frame Number

jpeg-full95

jpeg-ext

jpeg-ext-half

jpeg

roammax

64x64

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600

P
S
N

R
 (

d
B
)

Frame Number

jpeg-full95

jpeg-ext

jpeg-ext-half

jpeg

roammax

64x64

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

P
S
N

R
 (

d
B
)

Frame Number

jpeg-full95

jpeg-ext

jpeg-ext-half

jpeg

roammax

64x64

www.manaraa.com

92

To apply this understanding to the JPEG-based streaming algorithm, the tile

importance score (Equation 31) is scaled between [0, n], where n is the maximum JPEG

refinement level (in this particular implementation, n = 6). This normalized score

represents the desired progressive JPEG refinement level. To choose a specific tile to

stream, the server locates the visible terrain tile that has the greatest desired JPEG

refinement level less the previously transmitted JPEG refinement level and transmits the

next JPEG refinement layer. If all visible tiles have already been fully transferred, the

same metric is applied to tiles outside the viewer’s frustum.

An additional advantage of this approach is that it allows the terrain server to be

almost completely stateless. If the client is initialized with knowledge of the maximum

heights of every tile (4KB uncompressed with this data set), it can independently

calculate stream prioritization and simply send the server requests for tile refinement

layers – the server does not need to know anything about the state of the viewer. This

solution is significantly more scalable, allowing a terrain streaming server to be simpler,

and serve more concurrent clients.

The result of the JPEG-based streaming solution with the extended prioritization

scoring metric is graphed as jpeg-ext in Figure 41. The results of using a more

sophisticated streaming metric are uniformly positive – it is almost as good as the better

of jpeg and roammax in the worst case and significantly better than both in the best case.

This effectively addresses each of the three of the weakness of jpeg discussed in Section

3.5.1. The streaming prioritization used in jpeg-ext combines the quick-reacting nature

and feature identification of the ROAM-based exact representation algorithms with the

high compression coding efficiency of JPEG.

www.manaraa.com

93

To further demonstrate the effectiveness of the algorithm, we introduce jpeg-ext-half

(Figure 41). This simulation uses the same algorithm and data as jpeg-ext, but penalizes it

by only allowing it use of half the bandwidth available to the other streaming simulations.

Surprisingly, it is still able to keep pace with both jpeg and roammax in most cases. Even

with just half the bandwidth, it avoids the worst-case behavior characteristics exhibited

by jpeg, such as jpeg’s unreactiveness in flythrough #2 when the distant mountain range

rotates into view (as discussed in Section 3.5.1). jpeg’s results are superior to jpeg-ext-

half’s performance only when its bandwidth advantage allows it to converge to a fully

downloaded state first.

3.5.3 Understanding the Characteristics of JPEG Representation

As revealed in Section 3.5.1, the efficiency of JPEG encoding is of particular

importance to this work as it has allowed the even approximate terrain streaming

algorithms with weak data prioritization to provide a better remote visualization

experience than exact terrain streaming algorithms in most cases.

 Table 5 charts the average size of each refinement layer across all of JPEG encode

tiles. On average, JPEG compressed tiles using a quality level of 95 are 594.053 bytes

and JPEG compressed tiles using the maximum quality level 100 are 1081.669 bytes. The

reported sizes discard headers and other information which is identical in every

JPEG Refinement Level 1 2 3 4 5 6

Avg. size: JPEG Quality 95 80.325 124.924 56.5547 129.415 16.313 216.521

Std. Dev.: JPEG Quality 95 13.367 56.501 27.272 37.651 0.728 58.592

Avg size: JPEG Quality 100 88.332 124.998 70.049 213.088 16.330 598.873

Std. Dev: JPEG Quality 100 14.109 56.449 45.147 89.085 0.744 109.639

Table 5: Sizes (in bytes) of JPEG compressed terrain tiles.

www.manaraa.com

94

compressed tile (135 bytes). Any streaming algorithm need not burden itself with

transmitting duplicate data. For reference, an uncompressed tile is 4096 bytes.

Although JPEG compression at quality level 100 is not as compact as JPEG

compression at quality level 95, more than half of its data size footprint is represented

only in refinement level 6, the highest level of progressive refinement. The average JPEG

compressed tile at quality level 100 is only 512.797 bytes at refinement level 5, which is

noticeably smaller than the average fully refined JPEG compressed tile at quality level 95

(594.053 bytes).

Table 6 charts the visual quality of JPEG compression at the different refinement

layers, using a JPEG quality level of 100. At JPEG refinement layer 5, the quality of the

representation is 53.3564 dB, which is nearly indistinguishable from the fully refined

JPEG compressed map using a quality level of 95 (53.7115dB). These observations

indicate that a progressive JPEG using a quality level of 100 is as efficient at encoding

data as a progressive JPEG using a quality level of 95, and can deliver a superior final

representation of the data.

Compression Size PSNR Quality

64x64 Representation 4KB 23.7015 dB

SL/Opensim 3533 KB 57.9752 dB

Progressive JPEG level 1 193 KB 40.3551 dB

Progressive JPEG level 2 318 KB 47.9664 dB

Progressive JPEG level 3 388 KB 49.984 dB

Progressive JPEG level 4 601 KB 53.258 dB

Progressive JPEG level 5 617 KB 53.3564 dB

Progressive JPEG level 6 1216 KB 59.708 dB

Table 6: Compressed representation of terrain, as well as the PSNR comparison with the original, raw data.

JPEG-compressed representations use a quality level of 100.

www.manaraa.com

95

(1) Flythrough

(2) Flythrough, pausing at the midpoint to perform a 360˚ pan

(3) Flythrough with a continuous 360˚ pan

Figure 42: Simulation results for high-quality approximate representation streaming algorithms with

intelligent streaming. Frame number is on the X axis. The rendering quality of the frame (PSNR in dB).

Higher values are better.

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

P
S
N

R
 (

d
B
)

Frame Number

jpeg-full100

jpeg-full95

jpeg-ext100

jpeg-ext

jpeg-ext100-half

jpeg-ext-half

roammax

64x64

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600

P
S
N

R
 (

d
B
)

Frame Number

jpeg-full100

jpeg-full95

jpeg-ext100

jpeg-ext

jpeg-ext100-half

jpeg-ext-half

roammax

64x64

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

P
S
N

R
 (

d
B
)

Frame Number

jpeg-full100

jpeg-full95

jpeg-ext100

jpeg-ext

jpeg-ext100-half

jpeg-ext-half

roammax

64x64

www.manaraa.com

96

With this new insight, we re-examine the previous decision to use JPEG compression

at quality level 95, instead of its maximum quality level 100 encoding. The jpeg-ext

algorithm presented in Section 3.5.2 (JPEG encoded terrain tile streaming with extended

priority scoring) is modified to use a JPEG compressed tiles with a quality level of 100,

termed jpeg-ext100. The results are graphed in Figure 42. A simulation of this algorithm

using half as much bandwidth was also run, and the results are graphed as jpeg-ext100-

half.

For the most part, the jpeg-ext100 and jpeg-ext (and their half-bandwidth

counterparts jpeg-ext100-half and jpeg-ext-half) perform very similarly. The most

significant performance deviation occurs when jpeg-ext (and jpeg-ext-half) has

downloaded all relevant data, and their rendering quality is bound by the maximum detail

in the final JPEG refinement layer. At this point, jpeg-ext100 (and jpeg-ext100-half) can

continue streaming more terrain detail information, providing a superior quality terrain

rendering visualization.

3.6 Conclusion

To address the need for online virtual worlds to display landscapes on remote

viewing clients, we have proposed a lossy streaming architecture suitable for the

streaming of 3-dimensional terrain data. In the first stage of the jpeg-ext100 algorithm,

we reduce the height-field data representing the virtual terrain to a bitmap image, using

JPEG to compress it to approximately one quarter of the original size. The data is

compressed in a lossy manner that is indistinguishable by a human eye from the

www.manaraa.com

97

uncompressed version. By exploiting the structure of JPEG compression, our knowledge

of the shape of the terrain, and the viewer’s position and orientation, we are able to

design a nearly stateless streaming algorithm that prioritizes the portions of the terrain

data that are more relevant to the viewer. After initially connecting to the virtual world

and beginning streaming, the quality of the remote rendering rapidly improves and

becomes nearly indistinguishable from an uncompressed, pre-downloaded terrain after

approximately 20 seconds in our experimental scenarios. When compared to roammax, a

reference exact-representation algorithm with impractical computing requirements and

vertex-level expressivity, jpeg-ext100 yields a 5-15 dB PSNR improvement in the quality

of the rendering for the majority of the experimental scenarios after the initial 20 second

start-up. During the initialization phase, roammax and jpeg-ext100 yield similar results in

terms of rendered image quality. Because roammax has vertex-level granularity, it is

effective in adding detail to where it is needed most. However, as the simulation

progresses, the more compact data representation used by jpeg-ext100 begins to dominate

in terms of rendered level of detail.

The experimental results here demonstrate the importance of achieving a high data

compression ratio in order to provide high-quality streaming terrain. This further

underscores the importance of adopting lossy encoding techniques, which can yield much

higher compression rates than the non-lossy approaches. By exploiting the structure of

the compressed data, jpeg-ext100 intelligently prioritizes data delivery while requiring

very little state information to be stored at the server, greatly simplifying server design

and server computing load, allowing jpeg-ext100 to be an excellent candidate for

deployment in virtual-world streaming systems.

www.manaraa.com

98

3.7 Future Work

The techniques proposed here are suitable for deployment in its current state as a

streaming only solution. However, because client processing power is not unlimited, it

must be used in conjunction with a client-side LOD simplification algorithm for real-time

display. There may be a way to design a client-side LOD simplification algorithm that

applies understanding of the level of representational accuracy expressed in the

underlying compressed streaming data in order to design an efficient client-side rendering

algorithm.

The JPEG-based algorithms presented here only allows terrain to be presented in as

many levels of detail as is practical with JPEG compression (6-8 levels in practise) and

assumes that the highest level of detail supported in the terrain is uniform. For some

styles of virtual world, it may be more appropriate to use multi-level hierarchy of terrain

tiles, or even using an irregular mesh instead of a regular grid of height-posts to represent

the terrain.

At present, the material and lighting information is not considered. It may be

possible to design a way to send this information that combines this information with the

terrain geometry for a more efficient, unified streaming algorithm. Combining terrain

streaming with general 3D model streaming is also an open problem. Objects in the

environment (such as buildings) may occlude portions of the terrain, making it less

important to stream those parts of the terrain.

www.manaraa.com

99

Chapter 4 Distributed Simulation Architecture for Virtual Worlds

Virtual reality systems [active][croquet][sl][opensim] have risen in popularity with

readily available high-speed networking and affordable consumer computer graphics

processing hardware. One significant problem of designing 3D virtual worlds such as a

metaverse (a dynamic and persistent virtual online shared space where users interact

through digital avatars) is developing a scalable architecture that can manage millions of

simultaneous users in an interactive 3D environment with dynamic content. This chapter

presents XPU (Extremely Partitioned Universe), a hierarchical client-server architecture

for developing highly scalable Metaverses. This design addresses the problem of

dynamically partitioning the world to manage network and computing resources. Unlike

massively multiplayer online games (MMOGs) which strive to simplify their universe by

optimizing their implementation for a specific game environment, metaverses are

characterized by a generalized approach to the problem of 3D worlds. These designs seek

to promote unconstrained user-generated content for services such as social networking,

collaboration, scientific experimentation, e-commerce, marketing, gaming, education and

training. The unconstrained nature of metaverses requires a different style of architecture

to manage computing and networking resources than regular online games which are

fixed in content complexity and distribution. Because the world is dynamic and

constantly changing, especially as users move in the virtual space, the infrastructure

cannot pre-allocate computing resources to service different regions of the world as is the

style in all currently deployed virtual worlds [chen3]. The infrastructure must be

constantly adaptive, allocating computing resources when and where they are needed in

www.manaraa.com

100

the simulation. In practice, a large portion of the virtual space is unused for the majority

of the time, while others have disproportionately high amount user traffic, which makes

intelligently adaptive simulation management essential [varvello].

XPU is an architecture designed with the goal of managing 3D virtual space and

content in a client-server situation. The following are the design requirements for this

architecture:

 The system must follow a client-server architecture. In this way, the service

provider can guarantee security, availability and adequate resource

provisioning.

 The available computing power is large, but no single computer can support

the entire computing load. The state of the world is so vast and dynamic no

single entity can even have sufficient global knowledge of the world manage

computing resources to address the load balancing problem.

 The virtual environment is a free-form universe and cannot make strong

assumptions about the distribution of content in the metaverse, which will be

driven by dynamic user activity. The population is large and unpredictable,

and the architecture must accommodate flash crowds as well as vast unused

or unpopulated spaces.

It is the goal of XPU to be an architecture for metaverse-like entities and to be a

foundation for all types of MMO virtual simulations including online gaming and 3D

social networks.

www.manaraa.com

101

4.1 Related Work

There are many examples of massively multiplayer virtual spaces that each employ

distinct solutions to the problem of managing vast virtual spaces that need to service a

high number of simultaneous clients.

In MMOGs, sharding is a popular approach to broadly partition the user base into

disjoint copies of the world. In this model, replication is easy because users belonging to

one shard cannot interact with users in other shards [uo][wow]. Load balancing is

accomplished by restricting the number of simultaneous users in each replicated shard. In

these environments, only a minimal amount of functionality is delegated to the server to

simplify their operation, allowing them to accommodate a large number of simultaneous

users. For example, generalized physics and dynamic content are usually omitted.

Croquet [croquet] is a decentralized approach to the problem of virtual spaces

relying on a peer-to-peer synchronization protocol to distribute the contents of the virtual

space. A single croquet instance can become congested with many simultaneous users

since there is no mechanism to subdivide existing space.

Active Worlds [active] is another Metaverse-like virtual world that allows dynamic

content creation, including a simplified scripting interface. The Active World universe

hosts hundreds of worlds which can be traversed by users, where each world is hosted on

a single server. This architecture has no mechanism to allow a world to grow beyond a

single server’s ability to manage the world’s resources.

Second Life [sl][kumar][rosedale] and its open-source counterpart OpenSimulator

[opensim] are metaverse-like worlds that allow users to explore and create dynamic

content in a three-dimensional space. This space is partitioned into square 256x256m

www.manaraa.com

102

regions, each managed by a separate region simulator (sim) process. Each sim is tied to a

specific region of land and cannot be repartitioned to react to a changing workload. This

is the primary reason that scaling is such a difficult problem in this architecture. Larger

spaces are created by placing sims adjacent to one another. Shards or instancing is not

supported.

Several dynamic load balancing algorithms for virtual worlds based on spatial

subdivision have been proposed. Since the optimal solution for load balancing is NP-

complete, it is necessary to devise a more practical approach [liao]. Different topologies

of fixed grid spatial subdivision strategies have been explored, such as triangular, square,

hexagonal and brickworks [presetya]. These systems are not as scalable as spatial

subdivision approaches using hierarchical grids. Either dynamic resource allocation is not

present, or it involves moving server processes around so that unloaded servers can time-

share a single CPU. The frameworks that do dynamic server allocation first divide the

world into regular-shaped cells (squares and hexagons) [chen3] [ahmed]. These cells are

moved between servers to perform dynamic load balancing. These approaches are

inherently not scale-free as a single overloaded cell cannot be repeatedly subdivided until

it only contains a managable workload. It is also difficult to add new servers to

overloaded areas, because the algorithms are designed to shed load to neighbors, which

themselves may be overloaded.

Heirarchical subdivision using binary region splitting has been attempted using

Opensim and Sirikata as virtual world test platforms [liu][cheslack]. The analysis for the

work presented by Liu et al. focus on workload completion times for measuring the

effectiveness of the approach. The performance analysis for Sirikata focused on packet

www.manaraa.com

103

rate and server discovery latency. The approach in the Sirikata platform uses the

heirarchical structure to perform visibility estimation using solid angle queries to

simplify the streaming load and for message routing. The heirarchical structure is also

used to perform view aggregation and model simplification of larger subregions for

graphical streaming.

ALVIC approaches Metaverse design by using quad-tree subdivision for partitioning

logic servers and employing many proxy servers to hide the network topology from

clients [quax]. This work focuses on streaming services to manage clients and does not

consider the computing load required to manage the virtual world simulation itself.

Another spatial subdivision approach based on Voronoi partitions has been explored

[hu]. This approach reacts to increasing load by introducing server nodes near high

activity areas and relying on a Voronoi partition to allocation virtual space to a node. The

number of users assigned to a single region cannot be easily controlled using this

technique because the load balancing mechanism can only seek to reduce the amount of

server load by assigning more servers to an area, without directly considering the

distribution of users. In this system, the shape of subdivided regions is very irregular, so

the number of regions meeting at a single point is unbounded and can lead to more

complex synchronization issues [liu2]. The region shapes formed by Voronoi partitioning

can degenerate into long, thin wedge shapes, and the borders between regions move

drastically as two nearby Voronoi control points pass by each other. An advantage to

Voronoi partitioning is that it is scale-free and is able to adapt to any granularity of

simulation. This analysis presented in this work focuses on servicing client traffic rather

than the operational cost of running the simulation.

www.manaraa.com

104

The Project Darkstar (Sun Gamer Server Technology framework) approach to

accommodating massive world state avoids spatial subdivision in favor of storing object

and world state in a massive database [darkstar]. Actions on objects are performed

through the database. While this approach allows additional processing power to be

added easily, it discards any sense of spatial locality that makes the processing of virtual

worlds more efficient.

4.2 Approach to Distributed Systems for Virtual World

To manage the allocation of dynamic objects in virtual space, XPU borrows

fundamental tree data structures from computer graphics. Modern ray-tracers rely on

acceleration structures to manage scene and world data to minimize computationally

expensive collision and lighting calculations. One classic approach to this problem is to

divide space into hierarchical bounding volumes (HBV) [rubin] (Figure 43). In this

Figure 43: An example of a two-dimensional hierarchical bounding volume. Triangles represent objects,

circles represent bounding volumes. The virtual space is represented on the left, and the associated

heirarchy is represented on the right.

www.manaraa.com

105

approach, the 3D space is divided into hierarchies and arranged in a tree structure. Child

nodes represent space encompassed by the parent, with leaves being atomic renderable

objects such as triangles and spheres. kd-trees are a more restrictive type of spatial

partitioning, only allowing partitioning planes to subdivide space perpendicular to the

canonical 3-space axis, resulting in a binary space partitioning (BSP) tree. This data

structure is successfully used in modern ray-tracing algorithms [reshetov].

The core design motivation of XPU is the assumption that no single computer has

enough resources to manage the entire Metaverse simulation. XPU provides a convenient

load splitting and management mechanism to distribute computation over a set of servers.

At the core of the XPU architecture is the XPU tree. The XPU tree is very similar to an

HBV tree. The most significant difference between the XPU and the HBV tree is that

leaves in an XPU tree represent virtual regions instead of objects. Each leaf node in the

tree is a region managed by a separate server process. Just as in all HBVs, parent nodes

must completely encompass the space occupied by child nodes. The root node in the

XPU tree represents the entire virtual space, with world simulation being handled at the

leaf nodes of the tree, processed by region simulators (sims).

For this discussion, a sim is a single server computer. To distribute the workload of

managing the XPU world, each sim can divide its managed space in two and delegate

responsibility of managing a sub-region of its space to a new sim, allocated from a pool

of servers. Just as in a kd-tree, the space managed by the child nodes is expressed by a

partition plane, aligned perpendicularly to either the x, y or z axis. The left child is

responsible for managing all objects on one side of the first partition plane while the right

child is responsible for managing all objects to the opposite side of the partition plane.

www.manaraa.com

106

Figure 44: Recursive spatial subdivision of a virtual world (upper right) resulting in a heirarchical

topology (lower left). Users and dynamic objects in the world are represented with circles.

Root Sim

b

c

d

e
f

g
i

j

k

l

m

a

h

a b c d e

f g h i j

k l m

a)

Metaverse Root

b

c

d

e
f

g
i

j

k

l

m

1st Level Sim 1st Level Sim

a

h

a b c

d e f

g h i j

k l m

b)

Metaverse Root

b

c

d

e
f

g
i

j

k

l

m

1st Level 1st Level Sim

2nd Level Sim 2nd Level Sim

a

h

a b c d e f

g h i j

k l m

c)

Metaverse Root

b

c

d

e
f

g
i

j

k

l

m

1st Level 1st Level

2nd Level Sim 2nd Level Sim 2nd Level Sim 2nd Level Sim

a

h

a b c d e f g h i j k l m

d)

Metaverse Root

b

c

d

e
f

g
i

j

k

l

m

1st Level 1st Level

2nd Level Sim
2nd Level

2nd Level Sim 2nd Level Sim

a

h

a b

3rd Level Sim 3rd Level Sim

c d e f

g h i j k l m

e)

Metaverse Root

b

c

d

e
f

g
i

j

k

l

m

1st Level 1st Level

2nd Level Sim
2nd Level 2nd Level

2nd Level Sim

a

h

a b

3rd Level Sim 3rd Level Sim 3rd Level Sim 3rd Level Sim

c d e f g h i j

k l m

f)

Metaverse Root

b

c

d

e
f

g
i

j

k

l

m

1st Level 1st Level

2nd Level Sim
2nd Level 2nd Level 2nd Level

a

h

a b

3rd Level Sim 3rd Level Sim 3rd Level Sim 3rd Level Sim 3rd Level Sim 3rd Level Sim

c d e f g h i j k l m

g)

www.manaraa.com

107

Figure 44 illustrates the recursive construction of an XPU graph in a 2 dimensional

Cartesian space. The simulation begins with all users and dynamic objects in the world

being simulated by a single server. The world repeatedly subdivides until every sim

manages only the objects it has sufficient computing resources to accommodate.

4.2.1 The kd-tree Structure for Virtual World Partitioning

The kd-tree is a useful structure for spatial subdivision for several reasons. First,

because of its hierarchical nature, it naturally adapts to varied population size and

density. This divide-and-conquer approach repeatedly subdivides space until an

appropriate object density is selected. By selecting the locations of the partitions between

cells, the number of objects assigned to each region and server can be controlled with

high precision.

Each region is partitioned using axis-aligned boundaries, so a rectangular region

shape is always formed. Rectangular regions are useful because they are convex shapes,

which have more desirable properties when used for spatial subdivision in virtual world

contexts. These properties will be explored in more depth in Section 4.6. This can be

contrasted with other types of spatial partitioning which can give wedge shapes, non-

convex shapes, and even complex shapes.

kd-tree spatial partitioning limits the number of regions that meet at a point to a

maximum of four. It is undesirable to have many regions meeting at a single point in

virtual world spatial partitioning because a moving object crossing over this point may

have to undergo multiple boundary crossing / server migration events to reach its

destination.

www.manaraa.com

108

It is also possible to take advantage of the hierarchical structure of the kd-tree to use

as infrastructure for message routing and graphical LOD simplification [cheslack].

4.3 XPU Load Balancing

The most significant motivation to XPU design is the need to divide and distribute

processing load of a metaverse over many servers. A property of XPU volumes inherited

from its HBV-derived structure is that all objects will be fully enclosed by a bounding

sub-volume. This is an important property because it allows the processing of objects to

be assigned to a hierarchy of logical regions. A leaf node in the XPU tree represents a

region simulator (a single server computer) that is responsible for the management and

processing of objects in its enclosing volume.

The two most significant operations in managing XPU systems are node splitting and

joining. When a region simulator is overwhelmed by an implementation-specific

definition of load, it can choose to split its workload between two child sims (Figure 44).

For this operation, the XPU system will assign a new simulator (from a pool of idle

servers) to the task, and delegate a sub-region of the Metaverse to the newly allocated sim

to manage. The converse operation is simpler – when two sibling leaf simulators have a

sufficiently small combined workload, one sim synchronizes its state with its neighbor

which takes over the management of their combined virtual world volumes. The now

vacated child sim can rejoin the pool of idle simulators. In this manner, the XPU tree is

constantly balancing the simulation load of the virtual world over a cluster of servers.

www.manaraa.com

109

The goal of the XPU management system is to maximize the performance of the

interactive virtual world, given a workload and realistic computing constraints. A sim can

only accommodate a finite number of users and dynamic objects before it cannot

guarantee real-time performance. When two users in different simulators interact across a

region boundary, the two sims must communicate over the network, which incurs a

network cost. When a dynamic object traverses from a region managed by one sim to

another region, the management and processing of the object is transferred to a new sim.

Its information must be synchronized and marshalled across the network, which again,

incurs a cost.

The challenge of this work is to develop an algorithm that will efficiently allocate

computing resources to manage the simulation in a way that minimizes the computing

and networking cost of supporting the virtual world. An unconstrained virtual world that

supports an unbounded number of users can easily grow to a prohibitively large scale so

that no single computer or entity can handle the task of managing computing resources

for the entire world. It is for this reason that a distributed algorithm must be developed, so

that this problem can be approached without the requiring knowledge of the entire world

state.

4.4 XPU Simulation Workload

To evaluate the performance of the XPU system, a simulation workload representing

activity in a virtual world is required to compare the efficacy of different approaches to

virtual world management. For the purposes of this evaluation, the world is represented

www.manaraa.com

110

by a square region, with users and dynamic objects moving around in this space. In this

simulation, users and dynamic objects are modelled identically, and are interchangeable

with respect to overall virtual world modelling and performance evaluation.

Currently no completely freeform virtual world exists, so it is not possible to use a

real-world trace of user activity in a deployed virtual world. All existing traces of user

behavior in virtual worlds are constrained by the architectural limitations of the system

which XPU seeks to remove. Because of these reasons, a synthetic workload must be

constructed to evaluate the performance of the XPU system. To model an expansive

virtual world, we begin by assuming that the world can be contained by a large square

region and we model the movement patterns of objects over 100000 time steps.

The synthetic virtual world simulation workload is motivated by the following

observations:

 Users move around in the world.

 Users and content tend to cluster together, rather than be evenly distributed

throughout the world. Groups of users attract new users and have “flocking”

tendencies.

 The session times for users follow a heavy-tailed distribution [chang]. Peak

load varies drastically from minimum load.

The first two characteristics are reminiscent of an n-body simulation (a simulation of

celestial bodies moving in space, accelerating due to gravitational interaction). It is for

this reason that an n-body simulation was chosen as the basis of the synthetic evaluation

workload. n-body simulations are characterized by moving objects with natural clustering

behavior, as groups of objects naturally come together under the influence of gravity. To

www.manaraa.com

111

characterize user session times, new dynamic objects are introduced into the simulation

following a Pareto distribution, with time-limited life, also following a Pareto

distribution. A Pareto distribution is chosen for its characteristic long tail distribution

which matches patterns observed in user session times [chang]. The generator for this

distribution is given by:

 () ⌊ (

 ()
)

 ⁄

⌋ (32)

where U(0,1) gives a random number following a uniform distribution in the interval

[0,1). The objects themselves are initialized with a random mass, also following a Pareto

distribution. This is to promote natural clustering behavior so that some objects will

disproportionately attract other objects. The initial velocity of dynamic objects is given

by a Gaussian distribution, using the Box-Muller method

 () √ () (33)

where

 , () , () and .

The parameters for this simulation are chosen to model the population of a

moderately sized virtual world. For the purposes of the analysis presented in this chapter,

the population of the virtual world we are simulating has an average of roughly 17,000

users. More detailed information on the world population is given in Appendix A.

4.4.1 Simulation Workload Variations

Because different styles of virtual worlds will exhibit different overall user behavior,

several synthetic workloads have been constructed to model varying movement patterns

of users in virtual worlds. To create points of interest and promote object clustering, we

introduce the idea of fixed attractors. These are objects with a large mass that do not

www.manaraa.com

112

move under the influence of simulated gravity and have an unlimited lifetime. These

fixed attractors exist only to influence the motion of dynamic objects in the simulation

using gravitational attraction. Dynamic objects are preferentially initialized near fixed

attractors, using a Gaussian distribution to promote clustering behavior near these points

of interest. The following are the names and descriptions of these workloads:

 No Fixed Attractor: This workload does not contain any fixed attractors.

Objects are initially placed in a wide Gaussian distribution centered about the

center of the world. This workload exhibits a relatively small amount of

clustering behavior, with objects modestly preferring to gather near the center

of the world, to larger dynamic objects, and to other clusters of objects.

 Single Attractor: This workload contains a single fixed attractor placed at the

center of the world. Dynamic objects are initially placed in a tight Gaussian

distribution centered about the center of the world. This workload is

characterized by dynamic objects strongly preferring to cluster near the

center of the world.

 Single Attractor (Broad Initial Location): This workload contains a single

fixed attractor placed at the center of the world. Dynamic objects are initially

placed in a wide Gaussian distribution centered about the center of the world.

This workload is characterized by dynamic objects moderately preferring to

cluster near the center of the world.

 Row-lined Attractors: In this simulation workload, several uniformly sized

fixed attractors are placed regularly in a row along the center of the virtual

world. Dynamic objects in this workload tend to move along a line bisecting

www.manaraa.com

113

the world. This world represents a world where content is designed along a

single line or street, similar to the Metaverse described in Neal Stephenson’s

seminal science fiction novel on virtual worlds, “Snow Crash”.

 2x2 Attractors: This simulation contains four uniformly sized fixed attractors,

placed at the center of the four quadrants of the virtual world. This is

analogous to a world where the centers of activity are uniformly distributed

throughout the world.

 Circular Motion Attractor: This simulation contains a single fixed attractor

that gradually traverses the world in a circular path. This workload is

analogous to a virtual world where users preferentially flock to a moving

center of interest.

 Random Attractors: This simulation contains nine fixed attractors of varying

sizes, distributed in an initially random pattern around the world. This

workload is analogous to virtual worlds where content (and hence locations

of user congregation) is placed in an uncoordinated fashion, resulting in an

irregularly distributed traffic pattern.

More detailed statistics, graphs and diagrams describing these seven workloads are

located in Appendix A. These synthetic workloads will serve as a basis for evaluating

virtual world performance in different scenarios.

www.manaraa.com

114

4.5 Performance Metrics

To evaluate the performance of the XPU system on the various workloads described

in Section 4.4, we introduce four metrics to describe the overall performance of this

system under those workloads. These metrics quantify the amount of computing

resources that are required to manage the simulation, the level of service provided by the

simulators, and the amount of network communication and inter-server synchronization

required to support the simulation. For the experimental results in this chapter, simulation

results are only recorded after the first 10000 time cycles have elapsed. This is to allow

the simulation achieve a kind of “steady state” and disregard initialization cost. In a

persistent virtual world, the continuous operational efficiency of the system is much more

important than initialization cost of an entire world, which happens relatively

infrequently.

4.5.1 Number of Servers Metric

The total number of sims allocated to manage the world simulation is designated as

λ. This represents the number of servers (computing resources) that are allocated by XPU

to support the virtual world simulation. A lower number of servers are preferred so that

the virtual world can be more cost-effectively managed.

4.5.2 Server Crossing Metric

The total number of server crossings, δ, is the measure of resources used in each time

step to transfer the management and processing of objects from one sim to another. This

represents the cost of synchronizing the state of an object to another server, which

consumes networking resources. A server crossing can occur due to the movement of an

www.manaraa.com

115

object across the border between two sims, or when sims split or merge, necessitating the

transfer of objects between servers. An ideal result is δ = 0, with higher numbers

indicating an increased number of objects that must be migrated between sims, incurring

higher communication and synchronization costs. In practice, the overhead of performing

an object migration can be significant [liu] and care should be taken to minimize the

number of server crossings.

4.5.3 Spatial Locality Score

The spatial locality score is a measure of the virtual world management system’s

ability to allocate co-located objects together in the same sim. This is important because

objects that are co-located are more likely to interact, and the interaction cost of two

objects is lower if they are managed by the same server. If two objects in different sims

interact, this will incur a communication cost between two servers. The spatial locality

score, ω, can be thought of an estimate of the amount of inter-sim object-to-object

interaction in the virtual world. This is estimated by modelling a probability of interaction

between two objects as

 | |
 (34)

where oi and oj are the locations of object i and j. If two objects are in exactly the same

location, the probability of interaction is estimated to be 1. The probability that two

objects will interact in a given time step decreases cubically with the distance between

the two objects. This is consistent with the observation that two users or dynamic objects

are less likely to interact the farther they are from each other. Intuitively, as the distance,

www.manaraa.com

116

d, from an object increases, the volume enclosed by a sphere of radius d also increases

cubically.

The overall spatial locality score, ω, is obtained by summing over the probability

that all two objects in different simulators will interact.

 ∑

 | |

()

 (35)

where O = { (oi, oj) | oi and oj not in the same sim }. An ideal score is ω = 0, with higher

scores representing the need to perform a higher amount of inter-sim interactions.

Note that this metric is not scale-free. If the same distribution of objects is rescaled

from a small size (e.g. a dozen people in a conference room) to a large size (e.g. a dozen

people in a forest) this metric will yield completely different estimates of interaction

probability.

4.5.4 Overload Score

Overload score reflects the amount of insufficiently allocated computing power to

support the simulation. We assume that each server has a fixed amount of computing

power and can support the processing of a maximum of m dynamic objects. For the

purposes of this evaluation, m=32. This number was chosen in accordance with the

number of simultaneous users that a single server can process in currently deployed real-

world systems [sl]. If a sim is currently managing n dynamic objects, and n > m, then it is

said to be overloaded. () is a measure of the degree of overload of the sim. It

is the number of objects in the simulator experiencing the overload condition, multiplied

by the degree of overload of the simulator. Summing this result over all active simulators

yields the overall overload score of the simulation.

www.manaraa.com

117

 ∑

 (36)

where is the number of objects in simulator s. In the experiments presented in this

chapter, the virtual world management system is constructed so that no object

experiences overload, so θ = 0. This is to make the results of the experiments tractable, so

that the results of different XPU sim allocation algorithms can be directly matched to

server crossings, spatial locality score and required number of servers.

4.6 XPU Sim Allocation Algorithms

The main challenge of this work is developing a partitioning algorithm that

intelligently subdivides the world using the hierarchical bounding structure provided by

XPU. The overall goal of a subdivision algorithm is threefold: It should dynamically

subdivide the world in a way that provides enough computing power to satisfy the

processing demands of managing dynamic objects in the world while requiring as few

servers as possible. Where possible, it should construct regions so that nearby objects are

allocated to the same sim to minimize inter-sim interaction cost. Objects should be

migrated between sims as little as possible to reduce the overhead of synchronizing state

over the network.

In a real deployable system, this algorithm is difficult to construct because the world

size is unbounded, so no single server has the storage or processing power to know the

location of all objects in the world. This section will begin by exploring several global-

knowledge algorithms (where the state of the entire world is known to a single server),

www.manaraa.com

118

before using a distributed algorithm that does not rely on global knowledge to partition

the world using the XPU tree.

4.6.1 kd_split XPU Algorithm

This first approach is a global-knowledge algorithm referred to as kd_split and is

based on a k-d tree. The algorithm is very simple – it recursively partitions the world so

that the number of objects on each side of the partition is even. The orientation of the

partition is chosen to be orthogonal to the longest dimension of a rectangular region,

bisecting it, so that region shapes will be predisposed to constructing square-like regions

rather than strips of long rectangular regions.

Square regions are preferred to rectangular regions because they allow nearby

objects to be grouped closer together. The efficacy of this approach is reflected in the

spatial locality score. More squarely shaped regions will also allow the region to have a

shorter border relative to their area, which reduces the likelihood that a moving object

will traverse a region border, reducing the occurrences of server crossings due to object

movement across a region boundary.

To ensure that a sim is never overloaded, a sim is always subdivided when the

number of objects it contains exceeds maximum number of dynamic objects, m that can

be fully accommodated by the sim.

When two neighboring sims, s1 and s2 are underutilized, the objects from s2 should

be transferred to s1 which will take over the responsibility of managing the region

formerly managed by s2. s2 can then be returned to the pool of unused servers. This

merge operation reduces the number of active sims, λ, reducing the computing resources

www.manaraa.com

119

committed to supporting the virtual world simulation. The merging of two sims also

improves the efficiency of inter-object interaction, because objects formerly managed by

s2 can now interact directly with objects managed by s1 without incurring the overhead of

communicating between servers. This efficiency will be reflected in a lowered spatial

locality score, ω. Finally, reducing the number of sims will reduce the number of

dynamic objects that need to be moved from one sim to another due to object movement,

which incurs a synchronization cost as the object’s state must be transferred from one sim

to the next. Fewer server crossing events, δ, will occur because there will be fewer sims

managing a given area for moving objects to cross into.

 While merging underutilized sims is beneficial for the overall efficiency of the

virtual world, this merge operation also incurs a cost as all dynamic objects managed by

s2 will need to be transferred to s1. Transferring an object from one sim to another due to

a merge operation is the same as transferring an object from one sim to another due to the

object moving over the boundary between two sims, so the cost of a merge operation will

be reflected in an increase in the number of server crossings, δ. Care must be taken to

balance the cost of merge operations versus the benefit of merging sims. Through

Workload λ (avg.) Δ (avg.) ω (avg)

No Fixed Attractor 1020.7 530.4 511.0

Single Attractor (Broad Initial Location) 978.8 784.1 1422.0

Single Attractor 1024.0 1519.7 8628.9

Row-lined Attractors 1013.6 1182.6 4585.1

2x2 Attractors 1030.9 1278.9 3278.8

Circular Motion Attractor 1024.0 2214.9 5502.5

Random Attractors 1009.1 1462.1 4509.0

Table 7: kd_split performance. The number of servers (λ), server crossings (δ) and spatial locality score (ω)

reported here are averages over the 100000 timestep workload.

www.manaraa.com

120

experimentation later discussed in Section 4.6.6, a reasonable choice of merge condition

is when two neighboring sims contain less than ¾ m=24 dynamic objects.

The results of using the kd_split algorithm to manage the different evaluation

workloads are reported in Table 7. These performance results will serve as a baseline for

comparison with other XPU partitioning algorithms. To understand the limitations of

kd_split, we begin by recognizing that it always constructs a balanced tree where there

are an equal number of dynamic objects managed by both sides of each sub-tree. This has

the effect of ensuring that the XPU tree always has the structure of a complete tree, so

there will always be 2
n
 active sims for some natural number, n. 2

n
 active sims will always

be able to support 2
n
·m dynamic objects. This is insufficient granularity to ensure

efficient allocation of resources, and the average total usage of assigned computing

resources is just 52-55% for all workloads. However, of all the algorithms analyzed in

this chapter, kd_split did have the best mininimum number of active sims during all

workloads, because it is very efficient at allocating sims whenever the total number of

dynamic objects is just under 2
n
·m.

kd_split also yields unimpressive results with respect to the spatial locality score.

This is for two reasons: First, because of the inefficient allocation of computing resources

as mentioned above, dynamic objects are spread over an unnecessarily high number of

servers. Second, this algorithm has a tendency to develop long rectangular region shapes

as the simulation progresses, which are poor for exploiting spatial locality in the

distribution of objects. Long rectangular regions will group objects that are near each

other on one axis, but not necessarily near one another in space. The structure of XPU

tree when using kd_split is very stable (because sims are largely underutilized) so every

www.manaraa.com

121

sim is very long-lived, very rarely allocating new sims to manage the virtual world. Since

the only mechanism that prefers the construction of more square-like regions in the

algorithm operates only when new sims are allocated, over time region shapes have a

tendency to devolve into more thin and long rectangular regions.

The most serious shortcoming of the kd_split is the high number of server crossings

that occur when using this approach. This is in part due to the long thin rectangular

regions that tend to develop. Long rectangular regions have larger borders relative to their

interior area and are biased to cause dynamic objects to cross over sim boundaries as they

travel about the virtual world. However, the most significant contributor to the high

number of server crossings occurs due to how rigidly kd_split forces the XPU tree to be

completely balanced. To accomplish this, the algorithm frequently moves objects

between sims, which incurs a server crossing cost. This approach generates very few

server crossings from sim split and merge operations, because sims managed by kd_split

rarely split or merge.

4.6.2 kd_split_mincross XPU Algorithm

The most significant downfall of the kd_split algorithm is the high number of server

crossings it produces from its rigid enforcement of tree balancing. The general approach

of kd_split_mincross is to partition the world to minimize the number of server crossings

at each time step.

At the beginning of every simulation cycle this algorithm analyzes the XPU tree in a

depth-first traversal, determining where to move the partition that minimizes the number

of dynamic objects that will be moved between the two sub-trees. This calculation

www.manaraa.com

122

requires global knowledge of the location of all objects in the virtual world simulation

which makes it impractical for real-world deployment. In cases where there is more than

one choice of minimal sim-crossing partitions, the algorithm chooses the one that will

most equally balance the number of objects managed by the two sub-trees of the XPU

node. In this way, the shape of the tree is biased to being more like kd_split when

possible. To prevent the formation of a degenerate or highly unbalanced tree, we only

allow partitions where one sub-tree manages at most twice the number of dynamic

objects as its neighbor. As with all the experiments reported in this chapter, a sim is split

when it manages more than m=32 dynamic objects (to avoid overloading the server), and

merged when neighboring sims contain less than ¾ m=24 objects.

The performance results of kd_split_mincross are reported in Table 8. This algorithm

demonstrates a dramatic improvement over kd_split in terms of the number of server

crossings, reducing it by 21-72%. The most significant improvement occurs in the No

Fixed Attractor workload because the objects in this workload are more evenly

distributed throughout the world relative to the other workloads. This distribution allows

the sim allocation algorithm more latitude to choose partitions that reduce the number of

Workload λ (avg.) δ (avg.) ω (avg.)

No Fixed Attractor 1012.3 146.0 485.9

Single Attractor (Broad Initial Location) 986.2 395.0 1370.1

Single Attractor 974.5 1100.9 8264.3

Row-lined Attractors 966.5 424.1 4312.1

2x2 Attractors 995.9 845.4 3127.3

Circular Motion Attractor 939.0 1755.9 5283.7

Random Attractors 962.0 983.2 4298.5

Table 8: kd_split_mincross performance. The number of servers (λ), server crossings (δ) and spatial

locality score (ω) reported here are averages over the 100000 timestep workload.

www.manaraa.com

123

server crossings. More densely clustered workloads such as Single Attractor and Circular

Motion Attractor benefit less from the improved partition choice in kd_split_mincross

because these workloads have more dynamic objects moving around in dense clusters

(which will necessarily be more heavily partitioned) causing server crossings to occur.

The number of allocated servers is marginally improved over kd_split due to the less

rigid enforcement of a fully balanced tree. The reduced number of sims is also beneficial

to a lowered spatial locality score, because the objects are managed by a smaller number

of sims. Also, since sims are more often re-allocated as the population of dynamic objects

change, this has the effect of producing region shapes that more closely approximate a

square because regions are always split on the long edge. This is beneficial in reducing

the number of server crossing incurred because of object motion, due to a shorter border

length relative to enclosed area, and reducing the spatial locality score because nearby

objects are more frequently partitioned in a single sim.

4.6.3 centersplit_mincross XPU Algorithm

One notable observation of the behavior of the previously presented XPU algorithms

is that having square-shaped regions is beneficial for reducing the number of server

crossings and the spatial locality score. This motivates the construction of a new global

knowledge algorithm, centersplit_mincross. This algorithm behaves exactly as

kd_split_mincross does, but instead of preferring partitions that better balance the tree, it

prefers partitions that more evenly divide the space managed by two neighboring sub-

trees. This bias will allow regions to remain more squarely shaped as the simulation

progresses.

www.manaraa.com

124

A summary of the results of centersplit_mincross running on the various evaluation

workloads are presented in Table 9. Overall, the impact on the number of server crossings

relative to kd_split_mincross was minimal. The most significant improvement was

exhibited on the No Fixed Attractor workload because this workload has a more uniform

object distribution than the other workloads, which allows for the formation of larger,

squarer regions. Dynamic objects in this workload are also slower moving and so are not

crossing between sims as frequently. Fast moving objects will incur the cost of many

server crossing operations, regardless of the sim shape. A noticeable improvement was

exhibited in the spatial locality score for all workloads. As predicted, the squarer region

shapes allow more nearby objects to be allocated to the same region, decreasing the

number of objects that must interact across a sim boundary. centersplit_mincross was

also more effective at reducing the number of sims required to support the simulation.

Just as with kd_split, the bias in kd_split_mincross towards creating a fully balanced tree

prevented some sims from reaching the merge threshold, leaving more servers

underutilized. By removing this bias in centersplit_mincross, simulators were allocated in

a way that allowed them to more fully utilize their computational capacity to manage

Workload λ (avg.) δ (avg.) ω (avg.)

No Fixed Attractor 930.3 137.4 427.1

Single Attractor (Broad Initial Location) 896.2 384.7 1314.1

Single Attractor 901.4 1107.5 8144.5

Row-lined Attractors 954.2 444.4 4123.3

2x2 Attractors 927.6 845.6 3045.8

Circular Motion Attractor 917.1 1777.5 5208.4

Random Attractors 913.2 971.4 4192.5

Table 9: centersplit_mincross performance. The number of servers (λ), server crossings (δ) and spatial

locality score (ω) reported here are averages over the 100000 timestep workload.

www.manaraa.com

125

dynamic objects. Having a well-balanced tree is not very useful for efficiently allocating

server resources because we prefer that the leaves of the tree (sims) to be nearly at

capacity rather than having a balanced tree with leaves (sims) being evenly loaded and

under capacity.

A more careful examination of the simulation shows that the partition selection

algorithm was occasionally being constrained by the balancing requirement of

centersplit_mincross where one sub-tree can only contain at most double the number of

dynamic objects as its neighbor. To examine the effects of this requirement, a

modification to this algorithm was explored, termed centersplit_unbalanced_mincross.

This algorithm chooses partitions exactly as centersplit_mincross does but without the

balancing requirement. Each sub-tree is only required to contain at least one object.

The performance summary of this modified algorithm is reported in Table 10.

centersplit_unbalanced_mincross does not perform as well as centersplit_mincross. By

completely removing the balancing requirement many sims went highly underutilized.

This increased the number of sims required to support the virtual world, which in turn,

caused the spatial locality scores and the number of server crossings to increase.

Workload λ (avg.) δ (avg.) ω (avg.)

No Fixed Attractor 932.9 138.5 428.8

Single Attractor (Broad Initial Location) 905.1 397.0 1342

Single Attractor 1006.9 1220.1 8665.8

Row-lined Attractors 1066.0 422.6 4093.8

2x2 Attractors 965.5 893.7 3143.7

Circular Motion Attractor 1086.9 1960.0 5771.5

Random Attractors 961.8 1038.4 4340

Table 10: centersplit_unbalanced_mincross performance. The number of servers (λ), server crossings (δ)

and spatial locality score (ω) reported here are averages over the 100000 timestep workload.

www.manaraa.com

126

From this analysis, we conclude that centersplit_mincross represents a global-

knowledge algorithm that does well in reducing the server crossing cost of managing a

metaverse in an XPU-style architecture.

4.6.4 clustersplit and clustersplit_mincross XPU Algorithms

The key to improving the spatial locality of an XPU partition algorithm is to group

nearby objects together in the same region since nearby objects are much more likely to

communicate than distant objects. The section introduces clustersplit, an XPU

partitioning algorithm that uses a simplified k-means cluster analysis to allocate clusters

of objects to a single region. This is a global knowledge algorithm that is impractical to

deploy on a real-world system but serves as a reference algorithm to evaluate the efficacy

of other approaches.

As with all XPU algorithms, clustersplit recursively partitions the world, splitting

each sim along the shortest axis of the enclosed region at each level of the XPU tree,

splitting sims when they reach the computational capacity of a server to support them.

clustersplit seeks to minimize the squared error of the locations of all the objects in each

sub-region with respect to the centroid of objects in the sub-region. Suppose the set of all

objects in a region, O, is to be split into two sub-regions containing the sets of objects, OL

and OR where . Define the centroid of a region to be the geometric average

of all object locations in a set:

 ()

| |
∑ ()

 (37)

www.manaraa.com

127

The clustersplit partitioning algorithm will choose the partition that minimizes the mean

squared error of all of the locations of all objects in each sub-region with respect to its

centroid:

| |
(∑ | () ()|

 ∑ | () ()|

)

(38)

The results of using this partitioning algorithm on the evaluation workloads are

reported in Table 11. With respect to the previously explored algorithms, clustersplit

performs approximately on par with the best algorithms in terms of the number of sims,

and bests all previous algorithms in terms of spatial locality score. This indicates that the

previously explored algorithms leave room for improvement in this area. Unfortunately,

clustersplit performs abysmally in terms of server crossings, incurring a performance

degradation of roughly 70% to 800% compared to centersplit_mincross. This is because

clustersplit ruthlessly moves objects across sims to try and preserve groups of objects in

Workload λ (avg.) δ (avg.) ω (avg.)

No Fixed Attractor 931.6 1185.9 333.3

Single Attractor (Broad Initial Location) 899.4 1778.3 1139.1

Single Attractor 890.6 2390.6 7470.6

Row-lined Attractors 913.9 1699.2 3368.7

2x2 Attractors 916.8 2347.2 2644.8

Circular Motion Attractor 907.5 2969.6 4631.6

Random Attractors 898.7 2786.3 3749.9

Table 11: cluster_split performance. The number of servers (λ), server crossings (δ) and spatial locality

score (ω) reported here are averages over the 100000 timestep workload.

www.manaraa.com

128

their own simulator. It is for this reason that clustersplit is an unsuitable algorithm for

XPU partitioning.

To blend the benefits of a partition algorithm that is capable of identifying clusters of

objects while avoiding the penalty of an unacceptable amount of server crossings, a new

algorithm, clustersplit_mincross, is explored. This algorithm is constructed in a similar

fashion to centersplit_mincross. As before, kd_split_mincross is used as an algorithmic

framework, but instead of preferring partitions that better balance the tree, it prefers

partitions that are closer to the ideal cluster split. This bias will augment the

kd_split_mincross algorithm so that region partitioning will better preserve clusters in a

single sim.

The results of running clustersplit_mincross on the evaluation workloads are

reported in Table 12. With respect to the number of sims required for simulation, this

partitioning algorithm performs as well, with numbers on par with centersplit_mincross.

Since region shapes are not as square as centersplit_mincross, clustersplit_mincross

incurs more server crossings because region borders are longer relative to their enclosed

area, which increases the chances that a moving dynamic object will cross a region

Workload λ (avg.) δ (avg.) ω (avg.)

No Fixed Attractor 939.6 147.5 418.2

Single Attractor (Broad Initial Location) 907.9 397.6 1302

Single Attractor 900.4 1116 8124.2

Row-lined Attractors 939 459.5 3951.8

2x2 Attractors 926.2 858.9 3012.1

Circular Motion Attractor 919.2 1792 5189.9

Random Attractors 907 990.9 4174.9

Table 12: clustersplit_mincross performance. The number of servers (λ), server crossings (δ) and spatial

locality score (ω) reported here are averages over the 100000 timestep workload.

www.manaraa.com

129

boundary in its regular course of travel. With respect to the spatial locality score,

clustersplit_mincross performs better than centersplit_mincross, because it better

preserves clustered objects in a single region, which reduces the need for nearby dynamic

objects to interact across region boundaries. clustersplit_mincross represents an exact,

global-knowledge algorithm that does well to minimize the spatial locality score in a

metaverse managed with an XPU style framework.

4.6.5 bintree XPU Algorithm

We now turn our attention to the development of a distributed algorithm that does

not require global knowledge. The goal of this algorithm is to use a simplified

understanding of the world so that the partitioning algorithm is computable in a real

implementation and does not rely on global knowledge. As discovered in the analysis of

the global knowledge algorithms (Section 4.6.1-4.6.4), it is preferable to have square-

shaped regions. The reason for this preference is two-fold: Firstly, a square (compared to

a rectangle) has a smaller border, relative to its enclosed volume. This will lower the

number of server crossings incurred due to the motion of dynamic objects, because there

will be fewer borders to cross. Secondly, in a square region, the maximum distance

between two objects in a region will be shorter than that of two objects in a rectangular

shaped region. This will be beneficial in lowering the spatial locality score. To

accomplish this, we introduce the bintree data structure [shaffer]. A bintree is similar to a

quadtree, but instead of recursively partitioning a square region into four congruent

square sub-regions, it partitions regions into two congruent rectangular sub-regions. This

structure is employed by the bintree partitioning algorithm.

www.manaraa.com

130

 The key simplification used by bintree that allows it to operate in a real-world

scenario is that at each partitioning stage the algorithm only requires a greatly simplified

understanding of the world state. Instead of requiring knowledge of the locations of all

objects in a given region before being able to choose a partition, it only needs to

determine if the region should be split or not. This is much easier to compute in a real

system than previously discussed global-knowledge algorithms because it does not

consider the location of objects when constructing region partitions – it simply divides

each region in half, approximating the ideal region division. At each stage of spatial

Figure 45: The square-shaped virtual world, using different fixed attractor configurations. Circles

represent fixed attractors. The dotted lines represent the world after being partitioned by the first few levels

of bintree region subdivision.

Row Attractors

2x2 Attractors

Single Attractor

www.manaraa.com

131

subdivision, the bintree algorithm need only know how many dynamic objects are

contained in a region before choosing to split or merge regions. As before, bintree will

split sims containing more than m=32 dynamic objects and merge neighboring sims

containing less than ¾ m=24.

The construction of several of the evaluation workloads represent near worst-case

scenarios for bintree (Figure 45). In the Single Attractor and Single Attractor (Broad

Initial Location) workloads, there is a large fixed attractor at the very center of the virtual

space. This is especially disadvantageous for bintree because the region borders are fixed

and unmoving, so the first two levels of region subdivision will partition the space so that

the single large attractor is placed at the corner of four regions. This will insure that

dynamic objects moving about the center of gravity will incur a high number of server

crossings. In the Row-lined Attractors workload, the attractors are placed in a row. After

the first two levels of region subdivision, all of the fixed attractors will be placed on a

region border. Moving dynamic objects near the fixed attractors will therefore have a

higher predisposition of crossing a sim border as they move. In the 2x2 Attractors

workload, after just four levels of region subdivision, all of the fixed attractors will be

placed at the corner of four regions. These four fixed attractor configurations

disadvantage bintree, relative to the previously discussed global-knowledge algorithms

because they do not have fixed region borders and so will not be exposed to these

pathological worst-case scenarios.

www.manaraa.com

132

The results of running the bintree algorithm on the evaluation workloads are reported

in Table 13. Compared to the best of the global-knowledge algorithms,

clustersplit_mincross and centersplit_mincross, bintree performs well, even on

workloads that represent worst-case scenarios for bintree. In terms of the number of

servers required to support the simulation, bintree does roughly as well as the better of

centersplit_mincross and clustersplit_mincross. One weaknesses of bintree is that it can

only divide regions in half spatially, making it inefficient in dealing with situations where

the density of objects increases by more than a factor of two for neighboring sub-regions.

If a large number of objects only occupy a very small portion of the virtual space, bintree

must repeatedly subdivide the space before it can begin creating very small sub-region to

distribute the object management load onto multiple sims. This process will create

several under-utilized sims. This coarseness of region subdivision is demonstrated in the

Row-lined Attractors workload because the vast majority of dynamic objects are

concentrated about the center axis of the virtual space, and bintree must create several

under-utilized regions before it can begin subdividing regions where objects are heavily

concentrated (Figure 46).

Workload λ (avg.) δ (avg.) ω (avg.)

No Fixed Attractor 929.9 133.1 391

Single Attractor (Broad Initial Location) 895.5 371.5 1242

Single Attractor 900.7 1058.9 7815.6

Row-lined Attractors 989.2 399.2 3906.1

2x2 Attractors 927.6 809.4 2869.3

Circular Motion Attractor 909.6 1715.7 4891.5

Random Attractors 908.8 932.2 3969.1

Table 13: bintree performance. The number of servers (λ), server crossings (δ) and spatial locality score (ω)

reported here are averages over the 100000 timestep workload.

www.manaraa.com

133

bintree performs well when compared to centersplit_mincross (the best global

knowledge algorithm in terms of server crossings) and clustersplit_mincross (the best

global knowledge algorithm in terms of spatial locality), showing between 3-12%

improvements in all cases. This is due to bintree’s rigid adherence to square-like regions,

which are an excellent heuristic to reducing server crossings and spatial locality score.

4.6.6 Choosing the XPU Merge Constant

All the algorithms discussed in Section 4.6 depend on a fixed merge constant to

determine when the load shared between two neighboring simulators is low enough to

merit merging the workload managed by two neighboring simulators into a single

simulator. If the merge constant is set too high, the partitioning algorithm will seek to

merge simulators too frequently. This merge operation incurs a significant operational

cost because all the objects in one simulator will need to be transferred to the other, and

Figure 46: The square-shaped virtual world, using the Row-lined Attractors configuration. The smaller

circles and dots represent dynamic objects, and the larger circles represent fixed attractors. The dotted lines

represent the world after being partitioned with bintree. Note the larger, underutilized regions.

www.manaraa.com

134

so should be minimized [liu]. This cost is reflected in the server crossing metric, as each

object must be moved between simulators during the merge operation. If the merge

constant is set too low, the partitioning algorithm will merge simulators too infrequently,

resulting in a higher than necessary number of servers being allocated to manage the

simulation. A higher number of servers imply that the dynamic objects of the simulation

will be distributed across more simulators, resulting in a worse spatial locality score. A

higher number of servers will also result in more server crossing operations because

dynamic objects move and a higher number of active simulators mean that there are more

regions for these objects to cross into.

This merge constant is determined experimentally, by running the full simulation

with the split constant fixed at m=32 (the maximum number of dynamic objects each

simulator can manage without becoming overloaded) and varying the merge constant

between 2 to 32. These experiments are reported in Appendix B. A merge constant of ¾

m was found to be a reasonable choice for minimizing sim crossings and excessive

merge/split operations.

4.7 Results of Fixed Square Grid Spatial Subdivision

To better understand the effectiveness of dynamic spatial partitioning, we have

measured the performance of the various workloads when using a fixed square grid

pattern that is typical of Second Life and OpenSim (Figure 47) [sl][opensim]. Unlike the

dynamic partitioning algorithms explored in Section 4.6, this style of fixed spatial

partitioning must be set at the beginning of the experiment and cannot be changed as the

www.manaraa.com

135

simulation progresses. The administrator of this sort of system must have a way of

anticipating the kind of traffic that their virtual world will receive in order to properly

dimension their virtual world. To limit the number of dynamic objects assigned to a

server, as the algorithms presented in Section 4.6 do, the grid size would have to be set to

match the region of highest density during the entire simulation workload.

In these experiments, we consider square grids with between 900 servers (similar to

the average number of servers used by bintree and the other dynamic spatial subdivision

algorithms) and 35344 servers (more servers than objects). When the numbers of servers

used is small, the number of server crossings and the spatial locality score is better than

what is observed when using the dynamic partitioning approaches by up to a factor of

two. However, this advantage comes at a cost – the system becomes highly overloaded.

At times, some objects are allocated to servers that are managing more than ten times its

maximum load. The dynamic partitioning techniques in in Section 4.6 never assign more

objects to a server than it can accommodate and so have no overload.

Figure 47: The square-shaped virtual world, using a regular square grid spatial subdivision strategy. The

dotted lines represent the borders between regions.

www.manaraa.com

136

The only way to reduce the amount of overload in this kind of system is to add more

servers by dividing the world into smaller regions. While this does reduce the amount of

overload, it does not eliminate it in any of the tested workloads and scenarios. As the

number of servers assigned to manage the virtual world increases, the spatial locality

score and the number of server crossings also increases (worsens). Fixed grids using

more than 60
2
 servers show no advantage to fixed grid partitioning in terms of the

reported metrics, while still exhibiting a high amount of overload. It was not possible to

completely eliminate overload in the test scenarios by using more servers in a finer grid

pattern. The full set of experimental results is presented in Appendix C.

4.8 Conclusion

In this chapter we have proposed and described XPU, a hierarchical space

partitioning architecture used to distribute a simulation workload in infinitely scaling

chunks so that simulation workload requirements can be met. XPU borrows acceleration

structures from computer graphics and develops new uses and algorithms to leverage

these structures to support a dynamically scaling virtual world load balancing system

using distributed computing. These algorithms consider the inherent cost in networking

and communication operations when distributing computing over several servers. It has

been shown that the bintree spatial subdivision algorithm has good performance

characteristics relative to global-knowledge algorithms and fixed grid partitioning

techniques over several types of metaverse workloads. Using the simple heuristic of

favoring square-shaped regions, and subdividing the world so that the activity within

www.manaraa.com

137

each region can be mapped to a single server, the perimeter of the region relative to its

area is minimized, and the region shape allows nearby objects to be mapped to a single

server. This reduces the number of server crossings that are required to manage an object

travelling along a path, and decreases the amount of communication that must occur

between servers for inter-object interactions. Because this heuristic is so simple and does

not require global knowledge, bintree is a suitable algorithm for deployment in a

dynamically load-balanced distributed virtual world.

As the density of object clusters increases, it becomes more difficult to choose good

partitions and all spatial partitioning schemes will suffer. To improve performance for

these cases, it is essential to increasing the number of objects that can be processed by a

server, which would effectively increase region size. This can be accomplished by using

more powerful servers, optimizing the server [bowman] or separating the services that the

server provides [quax].

4.9 Future Work

One of the limitations in XPU is that it can only support rectangular regions. This

can be a limiting factor in cases where it is desirable to have irregular region shapes to

better subdivide the interaction. One potential means of addressing this is to allow

regions to subdivide beyond what is necessary, allowing a single server to manage

multiple regions. This would have the effect of segregating virtual world activity into

irregularly shaped regions composed of rectangular sub-regions. This would also have the

benefit of allowing the structure of the world to efficiently adapt to virtual world content

www.manaraa.com

138

distributions where the density of the content varies more than exponentially. Another

way to approach this problem is to use a structure based on skip quadtrees or compressed

quadtrees [eppstein].

The XPU virtual space is currently limited by its initial size. The virtual space

represents a square or rectangle and there is no mechanism to allow the virtual space to

grow or shrink. An extension to XPU that allows the virtual world to represent an

infinitely extending and unconstrained space will provide additional freedom to the

system.

The evaluation metrics used to evaluate XPU can also be expanded to consider a

more detailed simulation workload. For example, the estimation of spatial locality

considers all objects as having equal weight. In many realistic scenarios, dynamic objects

are not all equally important. For example, a speaker at a conference carries more

influence than an audience member, and an aircraft carrier is visually more imposing than

a rowboat.

Currently, XPU only uses proximity between dynamic objects as an estimator of the

likelihood of inter-object interaction. In a more advanced simulation, it might be possible

to use a more sophisticated estimator, such as mutual visibility. For example, two people

in close proximity to one another are less likely to interact if they are separated by a wall.

The analysis in this chapter regarding server splitting and merging does not consider

that the migration of many simultaneous objects can add a processing delay, as many

objects will need to be synchronized over the network between two servers. This delay

can be significant in real-world scenarios. One way to mitigate this cost is to gradually

split/merge neighboring regions, amortizing the server crossing cost over time.

www.manaraa.com

139

The algorithms explored in this chapter are purely reactive and do not make any

attempt to predict future load levels and object distribution patterns. By considering the

velocity of objects, it would be possible to predict future object distribution in the world,

and so it may be possible to take advantage of this prediction to perform better spatial

subdivision. It may also be possible to employ user-directed hints or machine learning

techniques to predict object distribution patterns. For example, if a user schedules a

recurring event with a significant number of participants every day at noon, it would be

possible to use this information to predict the amount of computing resources required to

manage a specific area in the virtual world. The spatial partitioning system could choose

to pre-allocate servers to manage that region in anticipation of the predicted traffic.

www.manaraa.com

140

Chapter 5 Conclusion and Future Work

This dissertation concludes with a summary of the contributions made in this thesis,

the lessons learned, as well as discussion of the direction for future work.

5.1 Summary

The work presented in this dissertation explores algorithm and systems software

design at different layers of an interactive networked 3D virtual application, ranging from

the base networking layer, to client/server graphics streaming protocols, to the design of a

distributed virtual-world back-end server architecture. These all address different aspects

of designing a truly unconstrained immersive virtual world.

By analyzing the semantics of the Internet and considering the networking

requirements of a virtual world, we have demonstrated how to build simpler and quicker

routers and network devices to better support the packet processing demands of a real-

time networked virtual environment. In reconsidering the necessity of supporting exact,

predictable semantics over a best-effort network, we have determined that allowing

packet classifiers to misclassify packets with a tiny probability gives us the freedom to

design a more efficient packet classification cache. By extending the best-effort

semantics inherent in IP networking upwards to the transport layer, we have proposed a

novel design for packet classification caches that probabilistically manages packet

processing decisions, using much simpler hardware, without modifying the overall

semantics of networking design. This approach of using an approximate cache can also

be extended to be used purely as an acceleration structure to augment the performance of

www.manaraa.com

141

an exact cache. With this solution, it is possible to optimize a system so that common

cases are handled more quickly without the penalty of probabilistic errors.

By considering the constraints of the networking infrastructure and the desire to

support a high-quality remote rendering, we have constructed a novel streaming

algorithm and data representation to better support remote visualization for virtual terrain

rendering. The proposed algorithm adapts to the remote viewer’s perspective and the

features of the terrain so that a high-quality representation of the virtual terrain stored on

a server can be accurately rendered on a remote client. We have demonstrated how to

design more efficient, practical ways of streaming terrain data by discarding detail while

preserving the overall visual experience. Because the human eye is tolerant of minor

deviation in perceptual information, the difference in the true, exact representation of the

terrain, and the rendered solution is imperceptible to a human observer. Graphical

information is reorganized and prioritized so that the most prominent visual information

is transmitted before adding fine detail so that a coarse approximation of the scene can be

rendered before rapidly converging on a finely detailed rendering.

XPU, a design for a systems architecture for metaverse-style virtual environments is

presented. XPU allows for the distributed management of an expansive virtual world

simulator by using a hierarchical spatial partitioning technique. This design allows the

virtual world to perform load balancing in reaction to the changing and dynamic nature of

the virtual world simulation. This design considers the computational and communication

costs of managing the distributed simulation in order to deliver an efficient, scalable

system. The result is a virtual world architecture that is both practical to deploy and has

www.manaraa.com

142

demonstrably good performance characteristics, relative to impractical global-knowledge

solutions.

5.2 Future Directions

We have addressed more specific future work in the individual chapters. Here, we

will focus on the larger issues and challenges that will arise as a result of the demand for

richer, more interactive virtual world experiences.

One area of active research and development is the user interface to interact with

virtual worlds. The oncoming availability of affordable, low-latency virtual reality head-

mounted displays promises to spur a new profusion in virtual reality applications

[oculus]. These types of displays have been combined before with devices that allow

users to express natural motion, such as omnidirectional treadmills, to provide a more

involved experience [darken]. Capturing non-verbal communication (such as facial

expressions and body language) is an on-going topic of research that will allow users to

project a more complete and expressive avatar in virtual environments [yang2]. Non-

traditional user interfaces, such as devices using gesture recognition, haptic feedback and

olfactory stimuli also present possibilities for interacting with virtual environments in a

deeper way [kortum].

The majority of the tools used to develop virtual world content (such as 3D

modelling packages, text-based document editors, bitmap manipulation software, and

avatar customizers) are run offline and later imported into the virtual world. While easier

to construct, this content development workflow disrupts the immersive nature of virtual

www.manaraa.com

143

worlds and presents obstacles to seamless remote collaboration. There would be benefits

to designing a unified framework to allow the integration of external content

development tools with virtual environments so that consistency and the sense of virtual

world immersion is maintained [croquet].

A more specific extension to this thesis would be to consider how to build a system

that is capable of large-scale distributed graphical simplification of a dynamic world. For

a remote client to be able to view and interact with a vast virtual world that is unlimited

in detail and complexity, a practical way of summarizing the world using level-of-detail

reduction algorithms to present a simplified visual representation of the world is

necessary. The work and techniques presented in this dissertation can form the

framework for a solution to this problem; it is possible to leverage a hierarchical spatial

subdivision method (such as XPU) to generate hierarchical level-of-detail simplification

for remote clients [cheslack]. It may also be possible to use this structure in conjunction

with image-based rendering techniques to present a compact and efficient representation

of a large virtual world [chaudhuri].

There is also the question on how to allow communication between independently

administrated virtual worlds. Some existing virtual world architectures such as

OpenSimulator and Active Worlds allow users to travel between different systems, but

each virtual world exists in its own disjoint virtual space. As virtual worlds evolve and

become ubiquitous, it is desirable to develop paradigms where different virtual worlds

can choose to express different relationships with each other. For example, two virtual

world systems could choose to be arranged as neighbors in a combined virtual space, or

one virtual world may be fully embedded inside another. These relationships can be even

www.manaraa.com

144

more complicated to express if virtual worlds can represent a non-uniform or non-

Cartesian space.

www.manaraa.com

145

BIBLIOGRAPHY

[active] Active Worlds, http://www.activeworlds.com/

[ahmed] D.T. Ahmed and S. Shirmohammadi. Uniform and Non-Uniform Zoning for

Load Balancing in Virtual Environments, In Proceedings of the International Conference

on Embedded and Multimedia Computing, Cebu, Philippines, August 11-13, 2010.

[alliez] P. Alliez and C. Gotsman. Recent Advances in Compression of 3D Meshes. In

Proceedings of the Symposium on Multiresolution in Geometric Modeling, September

2003.

[baboescu] F. Baboescu and G. Varghese. Scalable Packet Classification. In Proceedings

of ACM SIGCOMM 2001, pages 199-210, August 2001.

[baboescu2] F. Baboescu, S. Singh, and G. Varghese. Packet Classification for Core

Routers: Is There an Alternative to CAMs?. In Proceedings of IEEE Infocom 2003.

[bell] Passive Measurement and Analysis Project, National Laboratory for Applied

Network Research (NLANR), available at http://pma.nlanr.net/Traces/Traces/

[bloom] B.H. Bloom. Space/time tradeoffs in hash coding with allowable errors.

Communications of ACM 13(7): 422-426, July 1970.

[blue] Blue Mars, http://www.bluemars.com

[bowman] C. M. Bowman, D. Lake, and J. Hurliman. Designing Extensible and Scalable

Virtual World Platforms. In Proceedings of the Extensible Virtual Worlds Workshop

(X10), 2010.

www.manaraa.com

146

[broder] A. Broder and M. Mitzenmacher. Network applications of Bloom filters: a

survey. 40th Annual Allerton Conference on Communication, Control, and Computing,

Allerton, IL, October, 2002

[brownlee] N. Brownlee and M. Murray. Streams, Fows and Torrents. In Proceedings of

the Passive and Active Measurement Workshop, April 2001.

[byers] J. Byers, J. Considine, M. Mitzenmacher, and S. Rost. Informed Content Delivery

Across Adaptive Overly Networks. In Proceedings of ACM SIGCOMM 2002, pages 47-

60, August 2002.

[carlson] S. Carlson. Algorithm of the Gods. In Scientific American, March 1997.

[carter] L. Carter and M. Wegman. Universal classes of hash functions. Journal of

Computer and System Sciences, pages 143-154, 1979.

[chang] F. Chang and Wu-chang Feng. Modeling Player Session Times of On-line

Games. In Proceedings of the Workshop on Network and Systems Support for Games

(NetGames), Redwood City, California, May 2003.

[chaudhuri] S. Chaudhuri, D. Horn, P. Hanrahan, and V. Koltun. Image-Based

Exploration of Massive Online Environments. Stanford University Computer Science

Technical Report, CSTR 2009-02, 2009.

[chen] B. Chen and T. Nishita. Multiresolution Streaming Mesh with Shape Preserving

and QoS-like Controlling. In Proceedings of ACM 2002 International Conference on 3D

Web Technology, February 2002.

[chen2] K. Chen, P. Huang, C. Huang and C. Lei. Game traffic Analysis: An MMORPG

perspective. In Computer Networks, Vol. 50, No. 16, pages 3002--3023, November 2006.

www.manaraa.com

147

[chen3] J. Chen, B. Wu, M. Delap, B. Knutsson, H. Lu, and C. Amza. Locality Aware

Dynamic Load Management for Massively Multiplayer Games. In ACM SIGPLAN

Symposium on PPoPP, pages 289–300, New York, NY, USA, 2005.

[cheslack] E. Cheslack-Postava, T. Azim, B.F. Mistree, D. R. Horn., J. Terrace, P. Levis,

and M. J.Freedman. A scalable server for 3d metaverses. In Proceedings of the USENIX

Annual Technical Conference, June 2012.

[chiueh] T. Chiueh and P. Pradhan. High Performance IP Routing Table Lookup Using

CPU Caching. In Proceedings of IEEE INFOCOMM'99, New York, NY, March 1999.

[chiueh2] T. Chiueh and P. Pradhan. Cache Memory Design for Network Processors. In

Proceedings of the Sixth International Symposium on High-Performance Computer

Architecture (HPCA), 2000.

[cisco] Cisco Systems. Cisco Visual Networking Index: The Zettabyte Era – Trends and

Analysis.. White Paper, May 29, 2013.

[claffy] Kimberly Claffy, Internet traffic characterization. Ph.D. Thesis, San

Diego, 1994.

[claypool] Mark Claypool. Network Characteristics for Server Selection in Online

Games. In Proceedings of the ACM/SPIE Multimedia Computing and Networking

(MMCN) Conference, San Jose, California, USA, January 2008.

[croquet] Croquet Project. http://www.opencroquet.org/

[czerwinski] S. Czerwinski, B.Y. Zhao, T. Hodes, A.D. Joseph, and R. Katz, R. An

Architecture for a Secure Service Discovery Service. In Proceedings of MobiCom-99,

pages 24-35, N.Y., August 1999.

www.manaraa.com

148

[darken] R. Darken, W. Cockayne. and D. Carmein. The Omnidirectional Treadmill: A

Locomotion Device for Virtual Worlds. In Proceedings of the ACM Symposium on User

Interface Software and Technology, pages, 213–221, 1997.

[darkstar] Sun, Game Server Technology White Paper,

http://www.sun.com/solutions/documents/white-papers/me_sungameserver.pdf

[dharmapurikar] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor. Longest Prefix

Matching Using Bloom Filters. In Proceedings of ACM SIGCOMM'03, Karlsruhe,

Germany, August 2003.

[duchaineau] M. Duchaineau, M. Wolinsky, D. Sigeti, M. Miller, C. Aldrich and M.

Mineev-Weinstein. ROAMing Terrain: Real-time Optimally Adapting Meshes. In

Proceedings of the 8
th

 Conference on Visualization, pages 81-89, 1997.

[egevang] K. Egevang and P. Francis. IP Network Address Translator. RFC 1641, May

1994.

[eppstein] D. Eppstein, M. T. Goodrich and J. Z. Sun. The Skip Quadtree: A Simple

Dynamic Data Structure for Multidimensional Data. International Journal of

Computational Geometry & Applications. April 18, 2008.

[fan] L. Fan, L, P. Cao, J. Almeida, and A. Z. Broder. Summary Cache: A Scalable Wide-

Area Web Cache Sharing Protocol. IEEE/ACM Transactions on Networking (TON),

volume 8, issue 3, pages 281-293, June 2000.

[feldmann] A. Feldmann and S. Muthukrishnan. Tradeoffs for Packet Classification, In

Proceedings of IEEE Infocom, pages 1193-2002, March 2000.

[feng] W. Feng, D. Kandlur, Saha D, and K. Shin. Blue: A New Class of Active Queue

Management Algorithms. University of Michigan CSE-TR-387-99, April 1999.

www.manaraa.com

149

[feng02] W. Feng, F. Chang, W. Feng, and J. Walpole. Provisioning Online Games: A

Traffic Analysis of a Busy Counter-Strike Server. In Proceedings of the Internet

Measurement Workshop, November 2002.

[ferreira] M. Ferreira and R. Morla. Second Life In-World Action Traffic Modeling. In

Proceedings of the 20th ACM International Workshop on Network and Operating

Systems Support for Digital Audio and Video (NOSSDAV), 2010.

[fraleigh] C. Fraleigh, S. Moon, C. Diot, B. Lyles, and F. Tobagi. Packet-Level Traffic

Measurements from a Tier-1 IP Backbone. Sprint ATL Technical Report TR01-ATL-

110101, Burlingame, CA., USA, November 2001.

[gamersbin] Gamersbin – MMO Screenshots. http://www.gamersbin.com/

[gearth] Google Earth. http://earth.google.com/

[gopalan] K. Gopalan and T. Chiueh. Improving Route Lookup Performance Using

Network Processor Cache. In Proceedings of Supercomputing '02, ACM/IEEE

Conference on Supercomputing, pages 1-10, 2002.

[gupta] P. Gupta and N. McKeown. Algorithms for Packet Classification. IEEE Network

Special Issue, volume 15, number 2, ages 24-32, March/April 2001.

[hoppe] H. Hoppe. Progressive meshes. In ACM SIGGRAPH 96, August 1996.

[hu] S. Hu and K. Chen. VSO: Self-organizing Spatial Publish Subscribe. In Proceeings

of the Fifth IEEE International Conference on Self-Adaptive and Self-Organizing

Systems (SASO 2011), October 2011.

[huitima] C. Huitima. IPv6: The New Internet Protocol (2nd Edition). Prentice Hall,

1998.

www.manaraa.com

150

[iannaccone] G. Iannaccone, C. Diot, I. Graham, and N. McKeown. Monitoring Very

High Speed Links. In Proceedings of ACM SIGCOMM Internet Measurement

Workshop, San Francisco, CA, November 2001.

[ixp] Intel IXP1200 Network Processor,

http://www.intel.com/design/network/products/npfamily/ixp1200.htm

[isenburg] M. Isenburg, and P. Lindstrom. Streaming Meshes. LLNL tech. report UCRL-

TR-211608, April 2005.

[jain] R. Jain. Characteristics of Destination Address Locality in Computer Networks: a

Comparison of Caching Schemes, Computer Networks and ISDN Systems, 18(4), pages

243-254, May 1990.

[jpeg] Independent JPEG Group, http://www.ijg.org/

[lakshman] Lakshman, T. V. and Stiliadis, D., High-Speed Policy-Based Packet

Forwarding Using Efficient Multi-Dimensional Range Matching. In Proceedings of the

ACM SIGCOMM 1998, pages 203-214, August, 1998.

[leiner] B. M. Leiner, V. G. Cerf, D. D. Clark, R. E. Kahn, L. Kleinrock, D. C. Lynch, J.

Postel, L. G. Roberts, and S Wolff. A Brief History of the Internet. In ACM SIGCOMM

Computer Communication Review, volume 39 issue 5, pages 22-31, October 2009.

[li] K. Li, F. Chang, D. Berger, and W. Feng. Architectures for Packet Classification

Caching. In Proceedings of the 11th IEEE International Conference on Networks

(ICON), 2003.

[liao] C. Liao and Y. Chung. Tree-Based Parallel Load-Balancing Methods for Solution

Adaptive Finite Element Graphs on Distributed Memory Multicomputers. IEEE Trans.

Parallel and Distributed Systems, vol. 10, no. 4, Apr. 1999.

www.manaraa.com

151

[liu] H. Liu and M. Bowman. Scale Virtual Worlds Through Dynamic Load Balancing.

In Proc. of 14th IEEE/ACM International Symposium on Distributed Simulation and

Real Time Applications, 2010.

[liu2] H. Liu, M. Bowman, and F. Chang. Survey of State Melding in Virtual Worlds.

ACM Computing Surveys (CSUR), volume 44, issue 4, number 21, August 2012.

[luebke] D. Luebke and C. Erikson. View-Dependent Simplification of Arbitrary

Polygonal Environments. Proceedings of SIGGRAPH 97. pp. 199-208, 1997

[kinicki] J. Kinicki and M. Claypool. Traffic Analysis of Avatars in Second Life, In

Proceedings of the 18th ACM International Workshop on Network and Operating

Systems Support for Digital Audio and Video (NOSSDAV), May 2008.

[kortum] P. Kortum, HCI Beyond the GUI: Design for Haptic, Speech, Olfactory, and

Other Nontraditional Interfaces. Morgan Kaufmann, Burlington, MA, 2008.

[kumar] S. Kuma r, J. Chhugani, C. Kim, D. Kim, A. Nguyen, C. Biania, Y. Kim, P.

Dubey. Chracterization and Analysis of Second Life Virtual World. IEEE Computer

Graphics & Applications, (March 2008)

[mccreary] S. McCreary and k. claffy. Trends in Wide Area IP Traffic Patterns - A view

from Ames Internet Exchange. Technical Report, CAIDA, 2000.

[mitzenmacher] M. Mitzenmacher. Compressed Bloom Filters. In Proceedings of the

20th Annual ACM Symposium on Principles of Distributed Computing , pages 144-150,

2001

[nielson] Nielson Games – Gameplay Metrics, http://www.nielson.com

[oculus] Occulus VR, Irvine, CA, http://www.oculusvr.com

www.manaraa.com

152

[odlyzko] A. M. Odlyzko, Internet Traffic Growth: Sources and Implications, Optical

Transmission Systems and Equipment for WDM Networking II, B. B. Dingel, W.

Weiershausen, A. K. Dutta, and K.-I. Sato, eds., Proceedings of SPIE, volume 5247,

pages 1-15, 2003.

[opensim] OpenSimulator, http://opensimulator.org/wiki/Main_Page

[partridge] C. Partridge, P. Carvey, E. Burgess, I. Castineyra, T. Clarke, L. Graham, M.

Hathaway, P. Herman, A. King, S. Kohalmi, T. Ma, J. Mcallen, T. Mendez, W. Milliken,

R. Pettyjohn, J. Rokosz, J. Seeger, M. Sollins, S. Storch, B. Tober, G. Troxel, D.

Waitzman, and S. Winterble. A 50-Gb/s IP Router. IEEE/ACM Transactions on

Networking (TON), volume 6, issue 3, pages 237–245, June 1998.

[patro] A. Patro, S. Rayanchu., M. Griepentrog, Y. Ma, and S. Banerjee. The Anatomy

of a Large Mobile Massively Multiplayer Online Game. ACM SIGCOMM Computer

Communication Review, 42(4), 479-484, 2012.

[pouderoux] J. Pouderoux, J. Marvie. Adaptive Streaming and Rendering of Large

Terrains Using Strip Masks. In Proceedings of ACM GRAPHITE 2005, November

2005.

[presetya] K. Prasetya and Z. Wu. Performance Analysis of Game World Partitioning

Methods for Multiplayer Mobile Gaming. In Proceedings of the Workshop on Network

and Systems Support for Games (NetGames), October 2008.

[qiu] L. Qiu., G. Varghese, S. Suri. Fast Firewall Implementations for Software and

Hardware-Based Routers. In Proceedings of ACM SIGMETRICS 2001, Cambridge,

Mass, USA, June 2001.

www.manaraa.com

153

[quax] P. Quax, J. Dierckx, B. Cornelissen, G. Vansichem, and W. Lamotte. Dynamic

Server Allocation in a Real-Life Deployable Communications Architecture for

Networked Games. In Proceedings of the Workshop on Network and Systems Support

for Games (NetGames), October 2008.

[raman] S. Raman, H. Balakrishnan, M. Srinivasan. An Image Transport Protocol for the

Internet. In Proceedings of the International Conference on Network Protocols,

November 2000.

[reddy] M. Reddy, Y. Leclerc, L. Iverson, N. Bletter. TerraVision II: Visualizing Massive

Terrain Databases in VRML. In IEEE Computer Graphics and Applications, vol. 19, no.

2, pp. 30-38, 1999.

[reshetov] A. Reshetov, A. Suoupikov and J. Hurley. Multi-Level Ray Tracing

Algorithm. ACM Transactions on Graphics (TOG) – Proceedings of ACM SIGGRAPH

2005, volume 24, issue 3, pages 1176-1185, 2005.

[rosedale] P. Rosedale, C. Ondrejka C. Enabling Player-Created Online Worlds with Grid

Computing and Streaming. Gamasutra, September 2003.

[rubin] S. M. Rubin and T. Whitted. A 3-Dimensional Representation for Fast Rendering

of Complex Scenes. In Computer Graphics (Proceedings of SIGGRAPH 80) vol. 14,

pp.110-116, 1980.

[saltzer] J.H. Saltzer, D. P. Reed, and D. D. Clark. End-to-End Arguments in System

Design. In Proceedings of the Second International Conference on Distributed

Computing Systems. Paris, France. April 8–10, 1981. IEEE Computer Society, pp. 509-

512, 1981.

www.manaraa.com

154

[sanchez] Sanchez, L., W. Milliken, A., Snoeren, F. Tchakountio, C. Jones, S. Kent, C.

Partridge, and W. Strayer. Hardware Support for a Hash-Based IP Traceback. In

Proceedings of the 2nd DARPA Information Survivability Conference and Exposition,

June 2001.

[schroeder] Schroeder, William J., Jonathan A. Zarge, and William E. Lorensen.

Decimation of Triangle Meshes. In Proceedings of ACM SIGGRAPH '92 Proceedings of

the 19th Anual Conference on Computer Graphics and Interactive Techniques, pages 65-

70, 1992.

[sha] FIPS 180-1. Secure Hash Standard. U.S. Department of Commerce/N.I.S.T.,

National Technical Information Service, Springfield, VA, April 1995

[shaffer] Shaffer, C.A., Juvvadi, R., and Heath, L.S. A Generalized Comparison of

Quadtree and Bintree Storage Requirements. Image and Vision Computing 11, 7 , pages

402–412, 1993.

[sl] Second Life, www.secondlife.com

[snoeren] A.C. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones, F. Tchakountio, Kent,

S.T., and W. T. Strayer. Hash-based IP Traceback. In Proceedings of the ACM

SIGCOMM 2001 Conference, volume 31:4 of Computer Communication review, pages

3-14, August 2001.

[srinivasan] Venkatachary Srinivasan, George Varghese, Subhash Suri, and Marcel

Waldvogel. Fast and Scalable Layer Four Switching. In Proceedings of ACM

SIGCOMM’98, pages 191–202, September 1998.

www.manaraa.com

155

[stoica] I. Stoica, S. Shenker, and H. Zhang. Core-Stateless Fair Queueing: A Scalable

Architecture to Approximate Fair Bandwidth Allocations in High Speed Networks. In

Proceedings of ACM SIGCOMM, September 1998.

[stone] Stone, J., Partridge, C. When the CRC and TCP Checksum Disagree, In

Proceedings of the ACM SIGCOMM 2000 Conference (SIGCOMM-00), pages 309-319,

August 2000.

[strassburger] S. Strassburger, T. Schulze, and R. Fujimoto. Future Trends in Distributed

Simulation and Distributed Virtual Environments. Peer Study Final Report. Version 1.0.

Ilmenau, Magdeburg, Atlanta, 2008.

[thompson] K.Thompson, G.Miller, and R.Wilder. Wide-area Internet Traffic Patterns

and Characteristics. IEEE Network, 1997.

[trammell] B. Trammell and D. Schatzmann. On Flow Concurrency in the Internet and its

Implications for Capacity Sharing. In Proceedings of the 2012 ACM workshop on

Capacity sharing. ACM, 2012.

[tsai] F. Tsai, H. Liu, J. K. Liu, K. H. Hsiao. Progressive Streaming and Rendering of 3D

Terrain for Cyber City Visualization. In Proc. 27th Asian Conference on Remote

Sensing, October 2006.

[turner] B. Turner. Real-Time Dynamic Level of Detail Terrain Rendering with ROAM.

http://www.gamasutra.com/features/20000403/turner_01.htm

[uo] Ultima Online, http://www.uo.com

[usgs] USGS and C. McCabe. Grand Canyon Terrain.

www.cc.gatech.edu/projects/large_models/gcanyon.html

www.manaraa.com

156

[varghese] G. Varghese. Detecting Packet Patterns at High Speeds. SIGCOMM Tutorial,

August 2002.

[varvello] Matteo Varvello, Stefano Ferrari, Ernst Biersack, Christoph Diot. Exploring

Second Life. IEEE/ACM Transactions on Networking (TON), volume 19 issue 1,

February 2011.

[wachter] C.Wächter and A. Keller. Instant Ray Tracing: The Bounding Interval

Hierarchy. In Proceedings of the Eurographics Symposium on Rendering, pages 139--

149, 2006.

[waldvogel] M. Waldvogel, G. Varghese, J. Turner and B. Plattner. Scalable High Speed

IP Routing Lookups. In Proceedings of SIGCOMM ’97, pp. 25–36, September 1997.

[woodcock] B. Woodcock. Total MMOG Active Subscriptions.

http://www.mmogchart.com/Chart4.html

[wow] World of Warcraft. Blizzard Entertainment, Irvine, CA.

http://www.worldofwarcraft.com

[wwind] NASA World Wind. worldwind.arc.nasa.gov

[xu] J. Xu, M. Singhal, and J. Degroat. A Novel Cache Architecture to Support Layer-

Four Packet Classification at Memory Access Speeds. In Proceedings of INFOCOM,

pages 1445–1454, 2000.

[yang] S. Yang, C.S. Kim, and C.-C. Jay Kuo.View-Dependent Progressive Mesh Coding

for Graphic Streaming. In Proceedings of SPIE Vol. 4518, Multimedia Systems and

Applications IV, pages 154-165, November 2001.

www.manaraa.com

157

[yang2] Y. Xiao, J. Yuan and D. Thalmann. Human-Virtual Human Interaction by Upper

Body Gesture Understanding . In Proceedings of the VRST '13 19th ACM Symposium

on Virtual Reality Software and Technology, pages 133-142, 2013.

www.manaraa.com

158

Appendix A Virtual World Simulation Workload Summary

Figure A.1: Number of active objects during No Fixed Attractor workload.

Statistic Min Max Avg Harmonic

Mean

Standard

Deviation

of objects 13684 30669 17706.1 568933.2 1651.2

of new objects 5 12630 14.8 1284393533.3 84.8

of deleted objects 1 184 14.7 758495173.3 5.2

Max spatial locality

score

1248.6 8607.5 2043.4 5177924.0 625.7

 Table A.1: Key statistical summary for No Fixed Attractor workload.

Figure A.2: Locations of fixed attractors in the square-shaped virtual world in the No Fixed Attractor

workload.

www.manaraa.com

159

Figure A.3: Number of active objects during simulation run. Minimum: 13255, Maximum: 28344,

Average: 17203, Harmonic Mean: 585885, Standard Deviation: 1598

Statistic Min Max Avg Harmonic

Mean

Standard

Deviation

of objects 13255 28344 17203.3 585885.6 1599.0

of new objects 5 9948 14.4 1283322107.5 70.0

of deleted objects 1 177 14.4 773096108.9 4.8

Max spatial locality

score

2051.4 12356.1 3750.9 2793868.8 922.6

 Table A.2: Key statistical summary for Single Attractor (Broad Initial Location) workload.

Figure A.4: Locations of fixed attractors in the square-shaped virtual world in the Single Attractor (Broad

Initial Location) workload.

www.manaraa.com

160

Figure A.5: Number of active objects during simulation run. Minimum: 14454, Maximum: 21865,

Average: 16932, Harmonic Mean: 592479, Standard Deviation: 980

Statistic Min Max Avg Harmonic

Mean

Standard

Deviation

of objects 14454 21865 16932.5 592479.2 980.2

of new objects 5 5998 14.1 1284046118.0 48.2

of deleted objects 1 166 14.1 784552211.7 4.2

Max spatial locality

score

7246.0 49111.5 15828.6 678272.3 4567.0

 Table A.3: Key statistical summary for Single Attractor workload.

Figure A.6: Locations of fixed attractors in the square-shaped virtual world in the Single Attractor

workload.

www.manaraa.com

161

Figure A.7: Number of active objects during simulation run. Minimum: 13147, Maximum: 26430,

Average: 17284, Harmonic Mean: 581962, Standard Deviation: 1351

Statistic Min Max Avg Harmonic

Mean

Standard

Deviation

of objects 13147 26430 17284.7 581962.8 1351.9

of new objects 5 8411 14.3 1281927759.4 59.7

of deleted objects 1 162 14.3 773443329.8 4.5

Max spatial locality

score

5815.4 43491.6 10599.6 1000589.6 3241.6

 Table A.4: Key statistical summary for Row-lined Attractors workload.

Figure A.8: Locations of fixed attractors in the virtual world in the Row-lined Attractor workload.

www.manaraa.com

162

Figure A.9: Number of active objects during simulation run. Minimum: 14171, Maximum: 35115,

Average: 17400, Harmonic Mean: 579473, Standard Deviation: 1826

Statistic Min Max Avg Harmonic

Mean

Standard

Deviation

of objects 14171 35115 17400.7 579473.8 1826.4

of new objects 5 17508 14.5 1286045852.8 86.5

of deleted objects 1 164 14.4 772014163.1 5.2

Max spatial locality

score

4833.1 59387.7 7780.3 1355710.4 3080.2

 Table A.5: Key statistical summary for 2x2 Attractors workload.

Figure A.10 Locations of fixed attractors in the square-shaped virtual world in the 2x2 Attractor workload.

www.manaraa.com

163

Figure A.11: Number of active objects during simulation run. Minimum: 13427, Maximum: 31314,

Average: 17314, Harmonic Mean: 582347, Standard Deviation: 1695

Statistic Min Max Avg Harmonic

Mean

Standard

Deviation

of objects 13427 31314 17314.0 582347.5 1695.7

of new objects 5 14035 14.4 1284976804.7 78.6

of deleted objects 1 171 14.4 775668291.7 5.0

Max spatial locality

score

6840.5 59880.9 11854.4 882160.0 3472.3

 Table A.6: Key statistical summary for Circular Motion Attractor workload.

Figure A.12: Locations of fixed attractors in the square-shaped virtual world in the Circular Motion

Attractor workload. This single fixed attractor moves in a circular path around the world.

www.manaraa.com

164

Figure A.13: Number of active objects during simulation run. Minimum: 13170, Maximum: 26649,

Average: 17073, Harmonic Mean: 589293, Standard Deviation: 1378

Statistic Min Max Avg Harmonic

Mean

Standard

Deviation

of objects 13170 26649 17073.5 589293.5 1378.2

of new objects 5 9650 14.3 1285591932.3 60.7

of deleted objects 2 172 14.2 778846177.5 4.5

Max spatial locality

score

5614.7 50314.6 9745.9 1076399.8 2805.6

 Table A.7: Key statistical summary for Random Attractors workload

Figure A.14: Location of objects in the Random Attractors workload.

www.manaraa.com

165

Appendix B Extended Performance Results for Virtual World

Simulation

In every graph in this section, each data-line represents a partitioning algorithm with

the split constant chosen to be 32 (the maximum number of objects a simulator can

manage without becoming overloaded) while varying the merge constant. The choice of

merge constant ranges between 2 to 32. The performance metrics reported here are

described in detail in Section 4.5.

Figure B.1: No fixed attractor workload. Average number of server crossings per time interval vs. the

average number of servers required to manage the simulation. Better performance is towards the bottom

left on this graph.

www.manaraa.com

166

Figure B.2: No fixed attractor workload. Average number of server crossings per time interval vs. the

average number of servers required to manage the simulation. Better performance is towards the bottom

left on this graph.

Figure B.3: No fixed attractor workload. Average number of server crossings per time interval versus

average special locality score. Better performance is towards the bottom left on this graph.

www.manaraa.com

167

Figure B.4: No fixed attractor workload. Average number of server crossings per time interval versus

average special locality score. Better performance is towards the bottom left on this graph.

Figure B.5: No fixed attractor workload. Average number of servers required to manage the simulation

versus average special locality score. Better performance is towards the bottom left on this graph.

www.manaraa.com

168

Figure B.6: Single attractor (broad initial location) workload. Average number of server crossings per time

interval vs. the average number of servers required to manage the simulation. Better performance is

towards the bottom left on this graph.

Figure B.7: Single attractor (broad initial location) workload. Average number of server crossings per time

interval vs. the average number of servers required to manage the simulation. Better performance is

towards the bottom left on this graph.

www.manaraa.com

169

Figure B.8: Single attractor (broad initial location) workload. Average number of server crossings per time

interval versus average special locality score. Better performance is towards the bottom left on this graph.

Figure B.9: Single attractor (broad initial location) workload. Average number of server crossings per time

interval versus average special locality score. Better performance is towards the bottom left on this graph.

www.manaraa.com

170

Figure B.10: Single attractor (broad initial location) workload. Average number of servers required to

manage the simulation versus average special locality score. Better performance is towards the bottom left

on this graph.

Figure B.11: Single attractor workload. Average number of server crossings per time interval vs. the

average number of servers required to manage the simulation. Better performance is towards the bottom

left on this graph.

www.manaraa.com

171

Figure B.12: Single attractor workload. Average number of server crossings per time interval vs. the

average number of servers required to manage the simulation. Better performance is towards the bottom

left on this graph.

Figure B.13: Single attractor workload. Average number of server crossings per time interval versus

average special locality score. Better performance is towards the bottom left on this graph.

www.manaraa.com

172

Figure B.14: Single attractor workload. Average number of server crossings per time interval versus

average special locality score. Better performance is towards the bottom left on this graph.

Figure B.15: Single attractor workload. Average number of servers required to manage the simulation

versus average special locality score. Better performance is towards the bottom left on this graph.

www.manaraa.com

173

Figure B.16: Row-lined attractors workload. Average number of server crossings per time interval vs. the

average number of servers required to manage the simulation. Better performance is towards the bottom

left on this graph.

Figure B.17: Row-lined attractors workload. Average number of server crossings per time interval vs. the

average number of servers required to manage the simulation. Better performance is towards the bottom

left on this graph.

www.manaraa.com

174

Figure B.18: Row-lined attractors workload. Average number of server crossings per time interval versus

average special locality score. Better performance is towards the bottom left on this graph.

Figure B.19: Row-lined attractors workload. Average number of server crossings per time interval versus

average special locality score. Better performance is towards the bottom left on this graph.

www.manaraa.com

175

Figure B.20: Single attractors workload. Average number of servers required to manage the simulation

versus average special locality score. Better performance is towards the bottom left on this graph.

Figure B.21: 2x2 attractors workload. Average number of server crossings per time interval vs. the average

number of servers required to manage the simulation. Better performance is towards the bottom left on this

graph.

www.manaraa.com

176

Figure B.22: 2x2 attractors workload. Average number of server crossings per time interval vs. the average

number of servers required to manage the simulation. Better performance is towards the bottom left on this

graph.

Figure B.23: 2x2 attractors workload. Average number of server crossings per time interval versus average

special locality score. Better performance is towards the bottom left on this graph.

www.manaraa.com

177

Figure B.24: 2x2 attractors workload. Average number of server crossings per time interval versus average

special locality score. Better performance is towards the bottom left on this graph.

Figure B.25: 2x2 attractors workload. Average number of servers required to manage the simulation

versus average special locality score. Better performance is towards the bottom left on this graph.

www.manaraa.com

178

Figure B.26: Circular motion attractor workload. Average number of server crossings per time interval vs.

the average number of servers required to manage the simulation. Better performance is towards the bottom

left on this graph.

Figure B.27: Circular motion attractor workload. Average number of server crossings per time interval vs.

the average number of servers required to manage the simulation. Better performance is towards the bottom

left on this graph.

www.manaraa.com

179

Figure B.28: Circular motion attractor workload. Average number of server crossings per time interval

versus average special locality score. Better performance is towards the bottom left on this graph.

Figure B.29: Circular motion attractor workload. Average number of server crossings per time interval

versus average special locality score. Better performance is towards the bottom left on this graph.

www.manaraa.com

180

Figure B.30: Circular motion attractor workload. Average number of servers required to manage the

simulation versus average special locality score. Better performance is towards the bottom left on this

graph.

Figure B.31: Random attractors workload. Average number of server crossings per time interval vs. the

average number of servers required to manage the simulation. Better performance is towards the bottom

left on this graph.

www.manaraa.com

181

Figure B.32: Random attractors workload. Average number of server crossings per time interval vs. the

average number of servers required to manage the simulation. Better performance is towards the bottom

left on this graph.

Figure B.33: Random attractors workload. Average number of server crossings per time interval versus

average special locality score. Better performance is towards the bottom left on this graph.

www.manaraa.com

182

Figure B.34: Random attractors workload. Average number of server crossings per time interval versus

average special locality score. Better performance is towards the bottom left on this graph.

Figure B.35: Random attractors workload . Average number of servers required to manage the simulation

versus average special locality score. Better performance is towards the bottom left on this graph.

www.manaraa.com

183

Appendix C Fixed Grid Virtual World Simulation Workload

Summary

Experimental results for the different workloads, using fixed square grid partitioning

with between 30
2
 and 188

2
 servers are reported in this section. The spatial partitioning

structure is set at the beginning of each experiment and remains fixed throughout the

duration with no dynamic adaptation. The performance metrics reported here are

described in detail in Section 4.5.

Figure C.1: No Fixed Attractor workload, using fixed square grid partitioning with between 30
2
 and 188

2

servers.

10

100

1000

10000

100000

900 9000

 Spatial Locality Score

 Overload Score

 # of Server Crossings

of Servers

www.manaraa.com

184

Figure C.2: Single attractor (broad initial location) workload, using fixed square grid partitioning with

between 30
2
 and 188

2
 servers.

Figure C.3: Single attractor workload, using fixed square grid partitioning with between 30
2
 and 188

2

servers.

100

1000

10000

100000

900 9000

 Spatial Locality Score
 Overload Score
 # of Server Crossings

of Servers

100

1000

10000

100000

1000000

900 9000

 Spatial Locality Score
 Overload Score
 # of Server Crossings

of Servers

www.manaraa.com

185

Figure C.4: Row-lined attractors workload, using fixed square grid partitioning with between 30
2
 and

188
2
 servers.

Figure C.5: 2x2 attractors workload, using fixed square grid partitioning with between 30
2
 and 188

2

servers.

100

1000

10000

100000

900 9000

 Spatial Locality Score

 Overload Score

 # of Server Crossings

of Servers

100

1000

10000

100000

900 9000

 Spatial Locality Score
 Overload Score
 # of Server Crossings

of Servers

www.manaraa.com

186

Figure C.6: Circular motion attractor workload, using fixed square grid partitioning with between 30
2

and 188
2
 servers.

Figure C.7: Random attractors workload, using fixed square grid partitioning with between 30
2
 and 188

2

servers.

100

1000

10000

100000

1000000

900 9000

 Spatial Locality Score
 Overload Score
 # of Server Crossings

of Servers

100

1000

10000

100000

900 9000

 Spatial Locality Score
 Overload Score
 # of Server Crossings

of Servers

	Portland State University
	PDXScholar
	Winter 3-17-2014

	Towards Constructing Interactive Virtual Worlds
	Francis Chang
	Let us know how access to this document benefits you.
	Recommended Citation

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Chapter 1 Introduction
	1.1 Research Overview
	1.1.1 Network Packet Processing Optimization
	1.1.2 Terrain Data Representation and Streaming
	1.1.3 Distributed Computing for Virtual Worlds

	1.2 Dissertation Overview

	Chapter 2 Approximate Packet Classification Caching
	2.1 Related Work
	2.2 An Approximate Algorithm Approach
	2.2.1 Dealing with Misclassification

	2.3 Approximate Algorithm 1: Bloom Filters
	2.3.1 Properties of the Bloom Filter
	2.3.2 Dimensioning the Bloom Filter
	2.3.3 Multiple Predicates
	2.3.3.1 Multiple Predicates with Non-Uniform Distributions
	2.3.3.2 Multiple Predicates Compared With Single Predicate Bloom Filters

	2.3.4 Bloom Filter Aging
	2.3.4.1 Bloom Filter Aging: Cold Cache Approach
	2.3.4.2 Bloom Filter Aging: Double-Buffering

	2.4 Approximate Algorithm 2: Digest Caches
	2.4.1 Dimensioning the Digest Cache
	2.4.2 Theoretical Comparison of Bloom Filters with Digest Caches
	2.4.3 A Specific Example of a Digest Cache
	2.4.4 Exact Classification with Digest Caches

	2.5 Performance Evaluation of Approximate Caching Strategies
	2.5.1 Bloom Filter Cache Evaluation
	2.5.1.1 Bloom Filter Cold Caching Evaluation
	2.5.1.2 Bloom Filter Double-Buffering Cache Evaluation

	2.5.2 Digest Cache Performance Evaluation
	2.5.2.1 Digest Cache Results

	2.5.3 Hardware Specific Implementation

	2.6 Conclusion
	2.7 Future Work

	Chapter 3 Terrain Data Representation and Streaming
	3.1 Related Work
	3.2 Framework for Experimental Evaluation
	3.2.1 Underlying Network Assumptions
	3.2.2 Simulation Dataset

	3.3 Reference Algorithms
	3.3.1 Non-Streaming Reference Algorithms

	3.4 Exact Representation Terrain Streaming Algorithms
	3.5 Approximate Terrain Representation Streaming Algorithms
	3.5.1 Simple Approximate Terrain Representation Approach
	3.5.2 Prioritize Streaming for Approximate Terrain Representation
	3.5.3 Understanding the Characteristics of JPEG Representation

	3.6 Conclusion
	3.7 Future Work

	Chapter 4 Distributed Simulation Architecture for Virtual Worlds
	4.1 Related Work
	4.2 Approach to Distributed Systems for Virtual World
	4.2.1 The kd-tree Structure for Virtual World Partitioning

	4.3 XPU Load Balancing
	4.4 XPU Simulation Workload
	4.4.1 Simulation Workload Variations

	4.5 Performance Metrics
	4.5.1 Number of Servers Metric
	4.5.2 Server Crossing Metric
	4.5.3 Spatial Locality Score
	4.5.4 Overload Score

	4.6 XPU Sim Allocation Algorithms
	4.6.1 kd_split XPU Algorithm
	4.6.2 kd_split_mincross XPU Algorithm
	4.6.3 centersplit_mincross XPU Algorithm
	4.6.4 clustersplit and clustersplit_mincross XPU Algorithms
	4.6.5 bintree XPU Algorithm
	4.6.6 Choosing the XPU Merge Constant

	4.7 Results of Fixed Square Grid Spatial Subdivision
	4.8 Conclusion
	4.9 Future Work

	Chapter 5 Conclusion and Future Work
	5.1 Summary
	5.2 Future Directions

	Bibliography
	Appendix A Virtual World Simulation Workload Summary
	Appendix B Extended Performance Results for Virtual World Simulation
	Appendix C Fixed Grid Virtual World Simulation Workload Summary

