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ABSTRACT 

Networked virtual reality environments including virtual worlds devoted to 

entertainment, online socializing and remote collaboration have grown in popularity with 

the rise of commercially available consumer graphics hardware and the growing ubiquity 

of the Internet. These virtual worlds are typified by a persistent simulated three-

dimensional space that communicates over a computer network, where users interact with 

the environment and each other through digital avatars. Development of these virtual 

worlds challenges the limits of the networking infrastructure, 3D streaming graphics 

techniques, and the distributed computing design of the virtual world systems that 

manages the simulation. In this dissertation, we explore solutions to different aspects of 

the overall problem of developing a general purpose, networked virtual environment, 

focusing on the networking and software system issues. Specifically, we show how to 

improve the networking infrastructure to better support the high packet-rate traffic that is 

typical of virtual worlds, efficiently stream terrain data for remote rendering, and 

construct a dynamically adaptive distributed systems framework suitable for virtual world 

simulations. 
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Chapter 1 Introduction 
 

The evolution and growing ubiquity of the Internet along with the wide distribution 

of affordable computer graphics hardware has spurred a profusion in the creation of 

online 3D virtual reality environments. These virtual worlds have initially focused on 

gaming and entertainment but are evolving to support more complex virtual world 

applications [strassburger]. The first widely successful virtual worlds were developed for 

online gaming. Technical development focused on creating an expansive virtual world 

that allowed a large number of users to simultaneously participate in a real-time gaming 

experience in a genre of application termed “Massively Multiplayer Online Games 

(MMOG)” [uo][wow]. In these systems, players connect to remote servers that manage 

the simulation and interact with the world through virtual avatars. These MMOGs were 

narrow in focus, allowing only game-specific interaction using pre-downloaded content. 

This concept has been extended to construct more general purpose virtual environments 

we refer to as “metaverses”, where the interaction between users and their environment is 

less constrained and more free-form [active][croquet][blue]. 

These metaverses are characterized by a dynamic, persistent simulation, where the 

world and the content expressed within it are constantly changing. This introduces a 

number of problems in presenting a quality experience to the remote user. First, the real-

time interactive nature of virtual worlds requires support from the network infrastructure 

to provide high packet-rate low-latency data delivery to manage a constant stream of 

world update information [claypool]. Second, because the world environment is 

expansive, detailed, and dynamic, it cannot be pre-downloaded. World information must 
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be interactively streamed to the remote user [odlyzko]. Thirdly, because the world is free-

form, the world simulation workload is dynamic and unpredictable [kinicki]. The virtual 

world’s simulation system must be able to cope with this variation in world activity and 

adapt to the simulation workload. 

1.1 Research Overview 

As virtual worlds continue to evolve and gain in popularity, the desire for richer, 

more expansive, and more detailed virtual worlds continually pressures the computer 

systems that support them to improve [woodcock]. This thesis focuses on three 

components to support networked virtual environments:  

1) Cache optimization strategies in routers and network appliances through the 

use of approximate data structures to increase the packet processing 

capabilities of networking devices 

2) Terrain data streaming techniques, focusing on the compressibility of 

streaming terrain models and developing intelligent streaming and 

prioritization algorithms for terrain data 

3) Distributed system designs to support immersive virtual worlds simulations 

through dynamic load balancing by using spatial subdivision methods 

1.1.1 Network Packet Processing Optimization  

The Internet is designed as a best-effort, packet-switched network. Communication 

between different nodes connected to the Internet is divided into data packets and 

delivered through a complex network of nodes and routers to reach their destination. 
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None of the intermediate nodes in the network provide any guarantees to the order, 

timeliness, or integrity of the packets they process. Even the act of forwarding data 

packets towards their destination is not guaranteed. This allows the network to be 

designed from simpler components, which has helped the Internet Protocol to gain world-

wide adoption as the de-facto standard for network data exchange. By exploiting this 

understanding of the network, it is possible to construct more efficient packet processing 

algorithms without changing the semantics of packet delivery. 

The goal of real-time interactivity for networked virtual environments has changed 

the type of traffic that the network must support. Currently, network appliances are 

designed to support a smaller number of large data packets that make up the majority of 

today’s Internet traffic, primarily being composed of web, file sharing, and video 

streaming traffic [cisco]. Remote real-time interactive virtual environments require 

continuous, low-latency updates, which has a traffic composition that is unlike the 

majority of Internet traffic. In a packet-switched network such as the Internet, this means 

that time-sensitive updates from remote virtual worlds bombard the network with a high 

quantity of small data packets which represent world updates. This increases the packet 

rate that the network must be able to support [ferreira][feng02].  

At the network level, devices such as firewalls, network address translators (NAT), 

and routers rely on fast packet classification in order to process packets in a timely 

manner. These services require that packets be classified based on a set of rules before 

deciding how to process the packet. The result of this classification can be used for 

something as simple as deciding to admit or reject a packet (in the case of a firewall) or 

something more complex, such as rewriting the identification markers of a packet (in the 
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case of a NAT). These services require classification algorithms to not only analyze the 

destination address but also flow identifiers such as source address, layer-4 protocol type, 

and port numbers.  Packet classification is a very complex task and there has been a large 

amount of work done to try and develop more efficient classification algorithms [gupta]. 

Still, in the context of high-performance networks, the hardware requirements of 

performing full classification on each packet at line rates can be overwhelming. 

One method of accelerating packet identification is to employ a cache to store the 

results of previous classification decisions. Since connections on the Internet are 

discretized into data packets, each connection will generate many packets using identical 

flow identifiers (unique markers that identify a packet as belonging to a specific 

connection between two applications communicating over the network). By employing a 

cache, it is possible to eliminate significant amounts of repeated computation by 

bypassing the packet classification algorithm, enabling packets to be processed at line 

rates. It is not unusual for routers on the Internet to be dealing with hundreds of 

thousands of concurrent flows [trammel], which require larger caches to accommodate 

the larger volume of distinct flow identifiers. Since larger caches are necessarily slower 

and monetarily more expensive, the design of a caching algorithm must attempt to use as 

little memory as possible. 

This thesis addresses the problem of building faster, more compact, and more 

affordable packet classification caches by introducing the idea of creating an approximate 

cache – a cache that stores inexact representations of data instead of the data itself – that 

maintains the existing semantics and reliability expectations of the network. This cache 

can be used in two different ways. In the first way, it can be used to replace traditional 
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exact-precision caches, trading a very small potential misclassification rate in exchange 

for having smaller, faster caches. We show that the memory footprint required to support 

the same cache hit rate is reduced by nearly an order of magnitude. In the second, it can 

be used to augment traditional set-associative caches, allowing them to be accessed more 

efficiently. By adding a small (much less than 1/10
th

 the size) approximate cache in front 

of an exact n-way set associative cache we can reduce the amount of exact cache memory 

accessed to service a cache hit by nearly 1/n. Furthermore, the approximate cache can, 

with a probability near 100%, determine if a query will miss the exact cache. These 

designs will allow for the construction of faster, more cost-effective network devices to 

support the high packet rate traffic that is typical of interactive virtual worlds.  

1.1.2 Terrain Data Representation and Streaming 

One area of rapid growth in online application usage is areas of virtual mapping, 

such as Google Earth [gearth] and massively multi-user virtual worlds on both desktop 

[nielson] and mobile platforms [patro], which also need to render mapping and 

geographical data (Figure 1, Figure 2). For these types of applications, the data and the 

 

Figure 1: Screenshot of a terrain rendering 

 

Figure 2: Underlying rendered geometry 
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users viewing the data are often not co-located, so the world geometry must be delivered 

through the network for remote rendering and display. The amount of data that describes 

the world’s geometry will exceed the network’s ability to deliver it in a timely manner 

and must be managed in a way that allows the client to receive the data they need to have 

a visually pleasing experience without overwhelming the network, other applications that 

share the network, and other components of the virtual world simulation. The remote 

visualization of the virtual environment requires content and network-aware streaming 

algorithms to disseminate visualization data to remote viewers in order to provide a time-

sensitive high-quality rendering for the users of the virtual worlds.  

There is an imperative need for techniques and algorithms that are aware of network 

constraints and the limits of human perception. Data that is sent through the network that 

exceeds the ability of the viewer to perceive it is wasted bandwidth. To maximize the 

user’s virtual terrain browsing experience, the order in which remote data is transmitted 

to the client should be dictated by the viewer’s local perception – that is to say, visible 

features should be prioritized before occluded features, nearby objects favored over 

distant objects and complex data features sent before uniform data. Models and object 

geometry should be transmitted in a quality-aware manner that allows information to be 

transmitted continuously in a compact form that allows clients to view data with 

progressively increasing quality.  This thesis proposes algorithms that use estimates of a 

terrain’s features and visual impact on the viewer to prioritize streaming.  

The following are the key observations about the limitations of the network and 

human perception that guide the design of a well-behaved terrain streaming algorithm: 
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1. The amount of bandwidth that is available to the terrain streaming algorithm is 

limited. 

2. Large variations in terrain geometry (such as mountains) are more important than 

more uniform geometry (such as small hills or plains). 

3. Terrain near the viewer occupies a larger visual footprint and smaller variations 

in terrain geometry become magnified as they get closer. This means that terrain 

geometry near the viewer is more important than distant terrain geometry. 

This thesis proposes using a modified progressive JPEG representation to enhance 

the compressibility of terrain data. By describing the terrain geometry as a height field 

and dividing it into fixed-area tiles, the data becomes analogous to a grey-scale bitmap 

image. This representation is amenable to JPEG-style lossy compression that allows the 

data to be compressed in a way that prioritizes high magnitude frequency data (i.e. cliffs, 

mountain peaks, and inclines) and de-prioritizes low magnitude frequency data (i.e. 

plains and flat, featureless areas). By using a progressive JPEG encoding, the terrain 

geometry is reorganized into tiled refinement layers so that the geometry can be 

described in varying levels of detail, using a proportionately smaller amount of data. By 

considering the features of the terrain and the remote user’s viewpoint, these tiled 

refinement layers are streamed to the remote client so that the refinement layer tile that 

will have the most visual impact on the viewer will be sent first. 

1.1.3 Distributed Computing for Virtual Worlds  

One fast growing area of computer science is the management of distributed virtual 

worlds such as Second Life and World of Warcraft [kinicki][rosedale][sl][wow]. An 
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example of such a virtual world is shown in Figure 3. Because these virtual worlds can 

have unbounded size and complexity, it is necessary to develop systems that can 

distribute the computing load of managing the virtual world over many server computers. 

Management of an unbounded dataset is a problem because no single computer can 

process the state of the world in a timely fashion. The only way to manage a large virtual 

world is to use a distributed system, where the task of managing the virtual world is 

divided into smaller, more manageable pieces that can each be processed on a single 

computer. 

One way to approach the problem of load balancing a large virtual world is to 

spatially divide it into regions mapped to multiple computing resources. One simple 

approach is to divide the world into a regular grid [rosedale] (Figure 4). While this kind 

of structure does successfully manage to divide the world into smaller pieces, it is not an 

ideal solution. In a dynamic virtual environment, the computing load is not spread 

uniformly throughout the world [varvello]. This will lead to some regions being mostly 

empty, resulting in underutilized computing resources. Some areas will have a high level 

 

Figure 3: Screenshot from popular massively-multiplayer online game, World of Warcraft [gamersbin] 
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of activity, resulting in degraded performance because the region’s server cannot 

accommodate the computing load of the world simulation. Spatial subdivision using 

regular grids also makes an assumption about the virtual scale of the simulation. For 

example, a region could consist of one square meter, or one square mile. This fixes the 

expected scale of the simulation. A grid that is scaled appropriately to simulate an ant 

colony will not be scaled appropriately to simulate larger virtual worlds such as a 

Disneyland-like theme park. 

This thesis addresses this problem of load balancing in virtual world systems by 

proposing a distributed server infrastructure using a hierarchical dynamic spatial 

partitioning system. As the distribution of entities within the virtual world move around 

and cluster together, the system dynamically subdivides the virtual space, assigning more 

servers to process more densely populated areas (Figure 5). We show that using a simple 

bintree structure is as effective at efficiently distributing the simulation workload as more 

sophisticated (but difficult to compute) global knowledge spatial subdivision algorithms. 

 

Figure 4: Overhead view of a virtual world using 

regular grid spatial subdivision. Circles represent 

entities/players.  

 

Figure 5: Overhead view of a virtual world using 

dynamic spatial subdivision. Each rectangular region 

is managed by a separate server 
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1.2 Dissertation Overview 

The rest of this dissertation is organized as follows. 

 In Chapter 2, we discuss improving the performance of network devices by 

introducing a novel approximate caching approach for packet and flow identification. 

Chapter 3 presents the design and evaluation of an adaptive virtual terrain streaming 

protocol that balances the limitations of the network and desire for high quality 

visualization to deliver terrain geometry in a progressive, quality-aware and adaptive 

manner. 

Chapter 4 explores the construction of the server-side system for virtual world 

simulation. By using a hierarchical space partitioning algorithm to dynamically assign 

resources in a distributed computing environment, we design a system that has good 

performance characteristics using realistic knowledge requirements. 

Finally, Chapter 5 summarizes the research contribution of this dissertation, 

discusses remaining challenges, and outlines future research directions. 
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Chapter 2 Approximate Packet Classification Caching 
 

As the number of hosts and network traffic continues to grow, the need to efficiently 

handle packets at line speed becomes increasingly important.  Packet classifiers allow in-

network devices such as firewalls [qiu], edge routers performing priority marking 

[stoica], load balancing switches, and network address translators [egevang] to provide 

differentiated service and access to network and host resources by efficiently determining 

how packets should be processed.  These services require packets to be classified using a 

set of rules to be applied to packet header information such as the source and destination 

address, port numbers, and protocol type.  The complexity of the packet classification 

problem and its importance in constructing efficient networks has led to a large volume 

of work focusing on the development of more efficient classification algorithms 

[feldmann][gupta], especially concentrating on improving address prefix-matching 

algorithms [srinivasan][waldvogel]. Bloom Filters have also been used to accelerate exact 

prefix-matching schemes [dharmapurikar]. However, the requirements of performing a 

full classification on each packet at current line rates can be overwhelming [partridge]. 

To keep up with network speeds, some approaches resort to expensive hardware 

implementations to improve performance [lakshman][xu]. However, there does not 

appear to be a good algorithmic solution for multiple field classifiers containing more 

than two fields [baboescu2]. 

The evolving demands of online gaming and immersive networked virtual 

environments are also applying pressure to network development. These applications are 

latency sensitive and require frequent updates as players and entities in those virtual 
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worlds move and interact with the environment and with each other. The update packets 

in such applications are typically much smaller in size than more traditional bulk-data 

packets, further increasing the packet processing rate demands on networking hardware, 

even without increasing overall bandwidth requirements [ferreira][feng02]. 

It has been well established that memory access delays limit packet classification 

speeds. While the lookup algorithm itself can be implemented in hardware, the dynamic 

nature of the classifying rules requires that the classification table be stored in memory 

whose access latency limits classification speed. Due to the inherent latency of RAM 

memory access and the need to perform classification lookups at line speed, there is only 

sufficient amount of time to perform less than half a dozen memory accesses [varghese]. 

Unfortunately, the best solutions to this problem still require a significantly higher 

number of memory accesses [gupta].  

One effective way to improve classification lookup speed is to avoid performing full 

classification operations by caching classification decisions and using these previously 

cached results whenever possible. Whenever a new flow identifier is encountered, a full 

packet classification decision occurs. The result of this classification decision is cached 

and the following packets in that flow are classified using the cached values instead of 

being classified using the slower packet classification engine. Caching improves lookup 

speeds by taking advantage of the temporal locality inherent in network traffic [claffy]. 

Unfortunately, packet classification caches must scale up to the total number of 

flows and it is not unusual for routers on the Internet to concurrently handle hundreds of 

thousands of flows [trammel]. Because of this, packet classification caches must be 

reasonably sized in order to maintain high hit rates. The goal of this work is to develop a 
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more scalable packet classification cache, suitable for deployment on the evolving 

Internet. 

Section 2.1 explores related work in the area of packet classification and network 

caching. Section 2.2 outlines the argument for using an approximate algorithm in the area 

of packet classification. Section 2.3 introduces the first approximate algorithm, a Bloom 

filter based approach. Section 2.4 proposes another approximate algorithm, based on set-

associative cache framework storing hash digests identifiers. These algorithms are 

experimentally evaluated in Section 2.5. 

2.1 Related Work 

A classic approach to managing packetized data streams that exhibit temporal 

locality is to employ a cache that stores recently referenced items. Packet-switched 

networks inherently exhibit temporal locality; the arrival of a packet on an Internet link 

implies a very high probability of the arrival of another packet with the same flow 

identifier [brownlee][feldmann][mccreary][thompson]. 

 Employing caches to take advantage of this temporal locality has been shown to 

improve the performance packet classifier significantly in Internet routers [jain][xu]. 

Network cache design has borrowed concepts from computer architecture (Least-

Recently Used (LRU) stacks, set-associative multi-level caches) [jain]. Some caching 

strategies rely on CPU L1 and L2 cache [partridge] while others attempt to map the IP 

address space to memory address space to use the hardware TLB [chiueh]. Another 

approach is to add an explicit timeout to an LRU set-associative cache to improve 
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performance by reducing thrashing [xu]. In addition to leveraging the temporal locality 

observed on networks, approaches to improving cache performance have applied 

techniques to compress and cache IP ranges to take advantage of the spatial locality in the 

address space of flow identifiers [chiueh2][gopalan]. This effectively allows multiple 

flows to be cached in a single cache entry, so that the entire cache may be placed into 

small high-speed memory such as a processor's L1/L2 cache.  

How well a cache design performs is typically measured by its hit rate for a given 

cache size.  Generally, as additional capacity is added to the cache, the hit rates and 

performance of the packet classification engine should increase. In a set-associative cache 

architecture, increasing the level of associativity will improve cache performance, but 

yields diminishing returns for associativity levels greater than four [li]. 

Unlike route caches that only need to store destination address information, packet 

classification caches require the storage of full packet headers.  Unfortunately, due to the 

increasing size of packet headers (the eventual deployment of IPv6 [huitima]), storing 

full header information can be prohibitively expensive given the high-speed memory that 

would be required to implement such a cache. It is beneficial to develop a cache 

architecture that can store more information, without increasing the amount of memory 

required to support the cache. 

2.2 An Approximate Algorithm Approach 

Traditionally, cache designs trade off time and space with the goal of balancing the 

overall cost and performance of the device. This thesis proposes another axis of the 
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design space that has not been previously considered: accuracy.  In particular, we 

quantify the benefits of relaxing the accuracy of the cache on the cost and performance of 

packet classification caches.  

To understand the implications of developing an approximate packet classification 

cache, we must first consider the design semantics of the Internet. The network is 

structured as a packet-switched best-effort service, meaning that communication between 

hosts is divided into packets before being transmitted through the network, with 

intermediate nodes in the network providing no guarantees about bandwidth availability 

or the reliability, integrity, timeliness and order of data delivery. The responsibility of 

ensuring that a data packet is delivered is delegated to the end points, rather than the 

network infrastructure itself. This simplicity of this design was motivated by a desire to 

connect many different networks together, communicating in a single common Internet 

Protocol (IP), without requiring any internal changes to any of the distinct networks 

connecting to the Internet. By designing a protocol that required few guarantees from the 

underlying network, it would be possible to connect any type of network (such as 

ARPANET, Packet Radio and Packet Satellite) to a common Internet [leiner]. While this 

philosophy has led to the world-wide adoption of IP, this lack of reliability forces the 

burden of detecting and correcting for network faults to end hosts; the core infrastructure 

of the Internet is simple and the edges and end points of the network are intelligent. This 

design philosophy is known as the end-to-end principle [saltzer]. In this scheme, since the 

end hosts are designed to detect and correct faults, this introduces an opportunity to 

employ approximate algorithms within the network infrastructure because any errors 
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generated by the network will automatically be rectified at the endpoints of the data 

communication. 

This chapter explores the design of two styles of approximate caches. The first is 

explored in Section 2.3, and is based on a Bloom filter data structure [bloom]. A model 

for optimizing Bloom filters for this purpose is explored, as well as extensions to the data 

structure to support graceful aging, bounded misclassification rates, and multiple binary 

predicates. This design will yield potential false-positive matches and can store only a 

limited amount of information on each flow identifier. This design is appropriate for use 

in firewalls or routers. These types of approximate caches can provide nearly an order of 

magnitude cost savings at the expense of misclassifying one billionth of packets for IPv6-

based networks. 

The second design is explored in Section 2.4 and is based on storing hash digests of 

flow identifiers. It is suitable for situations requiring an arbitrary amount of information 

to be stored for each flow identifier. This design can also be adapted for use in a multi-

level cache, using the digest cache to augment a more traditional set-associative cache to 

provide improved cache performance without incurring the cost of a probabilistic 

misclassification. In this scenario, the digest cache is used as a Las Vegas style of 

approximate algorithm, where the digest cache will always correctly identify locations in 

the cache where a given flow identifier is not stored and yield high-probability matches.  

2.2.1 Dealing with Misclassification 

Measurement studies have discovered that between 1 in 1100 to 1 in 32000 TCP 

packets on the Internet will fail their CRC check, showing that packet corruption has 
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occurred, even though link-layer checksums should only admit error rates of 1 in 4 billion 

[stone]. Extrapolating, this means that on average, 1 in 16 million to 1 in 10 billion TCP 

packets will contain an undetectable error. With this in mind, we contend that introducing 

a packet misclassification probability in the order of 1 in a billion packets will not 

meaningfully degrade the utility of the network. It is the responsibility of the end system 

to detect and compensate for errors that may occur in the network [saltzer]. The 

immediate question that arises when we introduce the possibility of a misclassification is 

to account for the result of the misclassifications.  

Consider the case of a firewall. If F1, F2 ... Fq unique flows were to set signatures in 

an approximate cache that matched the signature to a new flow F’, we will accept F’ as a 

previously validated flow. In the case that F’ is a valid flow, no harm is done, even 

though F’ would never have been analyzed by the packet classifier. If F’ is a flow that 

would have been rejected by the classification engine then there may be more serious 

repercussions - the cache would have instructed the firewall to admit a bad flow into the 

network. This case can be rectified for TCP-based flows by forcing all TCP SYN packets 

through the classification engine. Another solution would be to periodically reclassify 

packets that have previously been marked as cached. If a misclassification is detected, all 

bits corresponding to the signature of the flow id could be zeroed. This approach has the 

drawback of initially admitting bad packets into the network, as well as causing flows 

which share similar flow signatures to be reclassified. 

If an attacker wanted to craft an attack on the firewall to allow a malicious flow, F’, 

into the network, they could theoretically construct flows, F’1, F’2 ... F’q, that would 

match the flow signature of F’. If the firewall’s internal hash functions were well known, 
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this could effectively open a hole in the firewall. To prevent this possibility, internal hash 

functions should not be openly advertised. An additional measure would be to randomly 

choose the hash functions that the firewall uses. Hash functions can easily be changed 

periodically as the cache ages, as there is no need to synchronize the hash function with 

any external host. 

In the case of a router, a misclassified flow could mean that a flow is potentially 

misrouted, resulting in an artificially terminated connection. In a practical sense, the 

problem can be corrected by an application or user controlled retry. In the case of UDP 

and TCP, a new ephemeral port would be chosen, constructing a new flow identifier, and 

network connectivity can continue. If an approximate cache has misclassified a previous 

flow, it will have no impact on the classification of the new flow. The network is also 

designed to atomically guard itself from errors. For example, if the misclassification 

results in a routing loop, the network already protects itself from this error by using the IP 

time-to-live counter (TTL). If we randomly force cached flows to be re-classified, we can 

reduce this “fatal” error to a transient one. TCP retransmits and application-level UDP 

error handlers will make this failure transparent to the user. 

Real-time update packets that are characteristic of online gaming and networked 

virtual worlds are performed with UDP packets for low-latency signalling [ferreira] 

[feng02]. These protocols are already designed to be resilient to packet loss. 
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2.3 Approximate Algorithm 1: Bloom Filters 

A Bloom filter is a data structure that allows a quick, but approximate test, to see if 

an identity, x, is a member of a set, S [bloom]. This approach may generate false positives 

– a Bloom filter may incorrectly report that an identity, x, is a member of the set – but a 

Bloom filter will never generate false negatives. The Bloom filter is a very space-efficient 

data structure, which makes it an attractive data-structure from which to construct a 

cache. Bloom filters were originally invented to store large amounts of static data 

(hyphenation rules on English words), but have found applications in computer 

networking [baboescu][mitzenmacher]. Applications range from web cache sharing [fan] 

to active queue management [feng] to IP traceback [sanchez][snoeren] to resource 

routing [byers][czerwinski]. 

The Bloom filter data structure used in this chapter consists of M = N × L bins. (Each 

bin consists of one bit.) These bins are organized into L levels with N bins in each level, 

to create N
L
 virtual bins (possible permutations). To interact with the Bloom filter, there 

are L independent hash functions, each associated with one bin level. Each hash function 

maps an element into one of the N bins in that level. For each element we enter into the 

Bloom filter, we compute the L hash functions and set all of the corresponding bins to 1. 

To test membership of any element in our Bloom filter, we compute the L hash functions 

and test if all of the corresponding buckets are set to 1. See Figure 6 for an example. This 

approach may generate false positives – a Bloom filter may incorrectly report that an 

element is a member of the set S. 
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For optimal performance, each of the L hash functions, H1, H2… HL should be a 

member of the class of universal hash functions [carter]. That is, each hash function 

should distribute elements evenly over the hash’s address space, and for each hash 

function           , the probability of collision   ( )    ( )     ,   is 1/N. In 

practice, we only compute one hash function,            , for each insertion/query 

operation and simply use different portions of the resulting hash to implement the L hash 

functions. 

This definition of a Bloom filter differs slightly from the classical definition [bloom], 

where each of the L hash functions can address all of the M bit buckets. This definition of 

the Bloom filter is often used in current designs due to potential parallelization gains to 

be had by artificially partitioning memory [feng]. It should be noted that this approach 

yields a negligibly worse probability of false positives under the same conditions but an 

equal asymptotic false-positive rate [broder].  

2.3.1 Properties of the Bloom Filter 

In order to better design and understand the limitations of our architecture, it is 

important to understand the behavioral properties of a Bloom filter. In particular, we are 

 

Figure 6: An example: A Bloom filter with N=5 bins and L=3 hash levels. Suppose we wish to insert an 

element, e. 
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interested in how the misclassification probability and the size of the Bloom filter will 

affect the number of elements it can store. 

A Bloom filter storing k elements has a probability of yielding a false positive of 
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For our purposes, we need to know how many elements, k, we can store in our bloom 

filter, without exceeding some misclassification probability, p. Solving for k yields 
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From Equation 3 it is clear that the number of elements, κ, that a Bloom filter can 

support scales linearly with the amount of memory M. The relative error of this 

approximation, κ/k, grows linearly with the number of hash functions L, and decreases 

with increasing M. For the purposes of our application of this approximation, the relative 

error is negligible. (For M ≥ 1024 bytes and L ≤ 50, the relative error is less than 0.35 %.) 

Note that solving for p in this equation yields the more popular expression [broder, 

fan, snoeren], 

  LMLep  1  ( 4 ) 
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2.3.2 Dimensioning the Bloom Filter 

Bloom filter design was originally motivated by the need to store spell-checking 

dictionaries in memory. The underlying design assumption is that the intent is to store a 

large amount of static data. However, this assumption is not applicable when dealing with 

dynamic data, such as network traffic. Previous work has attempted to dimension a 

Bloom filter such that the misclassification rate is minimized for a fixed number of 

elements [broder]. 

To apply Bloom filters to the context of driving a cache, we prefer to maximize the 

number of elements k that a Bloom filter can store, without exceeding a fixed maximum 

tolerable misclassification rate, p. To maximize κ as a function of L, we first take the 

derivative dκ/dL, set it to 0, and solve for L to find the local maximum. 
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Now suppose a u = p
1/L

, so L = ln p / ln u. 
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Since p ϵ [0, 1] then u ϵ [0, 1], u only has one solution, u = ½, which means κ is 

maximized for 

 ppL 2log2ln/ln   ( 7 ) 

This is an interesting result, because it implies that L is invariant with respect to the size 

of the Bloom filter, M. 

The accuracy of this approximation increases as M increases. In our testing, for 

cache sizes greater than 1KB, this approximation yields no error. In all the simulations 

presented in this chapter, this approximation and the optimal value of L are equal. Even if 

we choose a slightly sub-optimal value of L, the difference in the maximum number of 

flows the Bloom filter can store is negligible. Figure 7 graphs this relationship. For values 

of L that are near optimal, the number of flows, k, that the Bloom filter can store are 

nearly identical. 

 

Figure 7:  The maximum number of elements that can be stored by a 512KB cache 
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Figure 8 graphs the relationship between p and k. We can see that the relationship is 

roughly logarithmic. This approximation serves as a good guide for ranges of two orders 

of magnitude or less.  

A less obvious implication of this approximation is the relationship between the 

amount of memory, M, the number of elements, k, and the probability of a false positives, 

p. Since the optimal choice of L is asymptotically invariant with respect to M, and κ is 

proportional to k, we can assert that k is linearly related to M. A visual representation of 

this relationship is depicted in Figure 9. Note that a Bloom filter cache with a 

misclassification rate of one in a billion can store more than twice as many flows as an 

exact IPv4 cache, and almost 8 times as much as an exact IPv6 cache. (Each entry in an 

exact IPv6 cache consumes almost 3 times as large as an IPv4 entry [huitima].) The 

 

Figure 8:  The trade-off between the misclassification probability, p, and the maximum number of 

elements, k, using optimum values of L. 
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effective storage capacity of the Bloom filter decreases logarithmically with the 

misclassification rate. 

It is also important to recognize that with this scheme, it is possible to store mixed 

IPv4/IPv6 traffic without making any major changes to our design. 

To summarize: 

 The optimal value of L is invariant with respect to the size of the Bloom filter, 

M. 

 k and p are roughly logarithmically related. 

 k is linearly related to M. 

2.3.3 Multiple Predicates 

There are a number of applications where multiple binary predicate data may be 

useful in in a packet classification cache. For example, in the case of a router, the 

forwarding interface for must be stored along with the flow identifier. Our first extension 

 

Figure 9: The relationship between the amount of memory, M, and the maximum number of elements 

(flows), k that can be stored while maintaining a given misclassification probability 
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to the Bloom filter is to extend its storage capability to a multiple binary predicate data 

structure. We propose a modification to our existing algorithm that allows us to store 

multiple binary predicates while preserving the desired original operating characteristics 

of the Bloom filter cache. 

Consider a router with I interfaces. This is analogous to a data structure that records I 

binary predicates. To store this information, we will construct a cache composed of I 

Bloom filters. Suppose we are caching a flow, e, that should be routed to the i
th

 interface. 

We would simply insert e into the i
th

 Bloom filter in our cache. To query the cache for the 

forwarding interface number of flow e, we will simply need to query all I Bloom filters. 

If e is a member of the i
th

 Bloom filter, this implies that flow e should be forwarded 

through the i
th

 interface. If e is not a member of any Bloom filter, e has not been cached. 

In the unlikely event that more than one Bloom filter claims e as a member, we have an 

ambiguous result. One solution to this problem is to treat the cache lookup as a miss by 

reclassifying e. This approach preserves correctness while adding only minimal operating 

overhead for the small fraction of packets for which this will occur. 

The probability of misclassification, p, with this algorithm is 

 

Figure 10: An example: A modified Bloom filter with 5 buckets and 2 hash levels, supporting a router with 

8 interfaces. Suppose we wish to cache a flow e that gets routed to interface number 2. 

H1(e)

Level 1

H1(e)

Level 2



www.manaraa.com

27 

 

 

 

    ILk
Np


 11111  ( 8 ) 

Solving for k’, the maximum number of flows this approach can store, we find 
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Using the same technique discussed earlier in Section 2.3.2, we find that k’ is maximized 

when 
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The proposed extension to the Bloom filter cache requires increasing the amount of 

memory accessed by a factor of I. As will be shown in Section 2.5.3, additional memory 

accesses can incur serious performance penalty. However, by taking advantage of the 

memory bus width and fetching buckets from multiple Bloom filters simultaneously can 

easily mitigate this disadvantage (Figure 10). 

Consider a Bloom filter in which each bucket can store a pattern of I bits, where bit i 

represents interface i. When adding a packet to the bloom filter, we would only update bit 

i of each bucket. When querying the modified Bloom filter for a flow, e, we will take the 

results from each level of the bloom filter, and AND the results. 

2.3.3.1 Multiple Predicates with Non-Uniform Distributions 

The equations presented earlier in Section 2.3.3 assume that elements are evenly 

distributed over the multiple binary predicates. If the elements are not evenly distributed, 

our modified Bloom filter can become polluted in a short amount of time. 
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For example, suppose a router that supports 16 interfaces (binary predicates), using 

1KB of memory and a misclassification probability of 1e-9. If flows are distributed 

evenly over the interfaces, this configuration can support 167 elements. Conversely, if 

90% of flows set the first predicate, it would require only 13 elements to “fill” this Bloom 

filter. 

To compensate for this deficiency, suppose a new hashing function,           

  , and let   (    ( ))      . Instead of setting bit i in a Bloom filter, we will set bit 

j (Figure 11). This approach ensures that set bits are uniformly distributed throughout the 

cache, even when the elements are not evenly distributed. 

2.3.3.2 Multiple Predicates Compared With Single Predicate Bloom Filters 

It is important to examine how the multiple-binary-predicate Bloom cache compares 

to the single-predicate case. As discussed previously, the single-bit Bloom filter cache 

can store a maximum of           (      ). For an optimized choice of   

         , κ becomes 

 )1ln(
)ln(

)2ln( ln/2ln

max

pp
p

M   ( 11 ) 

  

Figure 11:  As before, suppose flow e is to be forwarded to interface 2. Now, let us suppose that H’(e) = 3. 

So j = (i+H’(e)) mod I=(2+3) mod 8 = 5. 

H1(e)

Level 1

H1(e)

Level 2
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The maximum number of flows the modified multi-bit Bloom filter can store is 

    
  (  [  (   )   ]

    

)

  (      )
 ( 12 ) 

Applying the approximation             we find 

    
 

  
  (  [  (   )   ]

    

) ( 13 ) 

When L’ is optimized, κ’ becomes 

       
    

  (  (   )   )
  (  [  (   )   ]

 
) ( 14 ) 

where 

   
    

  (  (   )   )
 ( 15 ) 

Immediately, we can see that the two approaches are still linearly related in M. Note here 

that I and p are constants. This is an important property, because it means that our 

proposed algorithm preserves the behavior of the single binary predicate cache. 

To better determine the relative performance of the multiple binary predicate and the 

single-binary-predicate cache approaches, we take the difference in the maximum 

number of flows that each design will accommodate. 

             (   ) (
 

  (  (   )   )
 

 

   
) ( 16 ) 

For     , (   )         , giving 

            
 (   ) 

   
(

   

       
) ( 17 ) 
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If I is not very big, as is the case when considering the number of interfaces of a 

router (for reference, a Juniper T640 routing node has 160 interfaces) then           , 

we can approximate by 

            
 (   ) 

   
(

   

     
)  

 (   )    

(   ) 
 ( 18 ) 

This is an overestimate of the difference. So, we can say that, at worst, this approach 

scales logarithmically with I (for M and p constant). 

It is surprising how effective this approach is. The algorithm does not pollute the 

Bloom filter by setting bits any more than the single-bit approach. However, it is slightly 

more susceptible to contamination because each membership query examines L × I bits, 

as opposed to the L bits of the single binary predicate Bloom filter. 

 

Figure 12: Comparison of storage capacity of various multi-predicate Bloom filters 
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Figure 12 compares the difference in the maximum number of flows that can be 

stored by a multi-predicate Bloom filter cache.  The number of flows that a multiple 

predicate Bloom filter can store decreases logarithmically with the number of binary 

predicates. 

Note that the multi-predicate solution is a superset of the single-predicate solution – 

setting I to 1 yields the equations presented in Section 2.3.1. 

2.3.4 Bloom Filter Aging 

This second extension to the Bloom filter adds the ability to evict stale entries from 

the cache. Bloom filters were originally designed to store digests of large amounts of 

static data – adapting this algorithm to gracefully evict elements is required to use this 

data structure meaningfully in a dynamic environment such as the Internet. 

The first step towards developing an algorithm to age a Bloom filter is to decide how 

much information has already been stored in the cache. A simple method of deciding 

when the cache is full is to choose a maximum tolerable misclassification probability, p. 

When the instantaneous misclassification probability exceeds this constant, (pinstantaneous > 

p), we consider the Bloom filter to be “full”. We can calculate pinstantaneous by using 

different means. Let ω1, ω2, ... , ωL be the fractions of buckets of each level of the Bloom 

filter that are set. The probability of misclassification is simply the product of ωi’s. 

                      ∏  

 

   

 ( 19 ) 

This method will accurately estimate the misclassification probability. The drawback to 

this approach is that it will require counting the exact number of bits we set, complicating 
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later parallel access implementations of this algorithm, as well as adding several per-

packet floating-point operations. 

We can devise a simpler estimate of Pmisclassification that does not involve precise bit 

counting, nor global synchronization, by applying knowledge of the properties of the 

Bloom filter discussed earlier. We simply need to count the number of flows k’ that we 

have inserted into our Bloom filter. So our estimate of the misclassification probability 

becomes 

                         (     )     ( 20 ) 

Reversing this equation, and solving for kmax we get 

       ⌊    (      
   

)     (     )⁄  ⌋ ( 21 ) 

 This estimate also provides the benefit of simplicity of calculation – floating-point 

arithmetic is no longer required during runtime (since P, N, L are constant), only an 

integer comparison (k’ > kmax). Additionally, it becomes easier to gauge the behavior of 

the cache - k’ increases proportionally with the number of new flows we observe. 

With this information, it is now possible to design an aging strategy for the Bloom-

filter cache. 

2.3.4.1 Bloom Filter Aging: Cold Cache Approach 

This naïve approach to the problem of Bloom filter aging involves simply emptying 

the cache whenever the Bloom filter becomes “full”. The main advantage to this solution 

is that it makes full use of all of the memory devoted to the cache, as well as offering a 

simple implementation while maintaining a fixed worst-case misclassification 

probability. 
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The disadvantages, however, are quite drastic when considering the context of a 

high-performance cache: 

 While the cache is being emptied, it cannot be used. 

  Immediately after the cache is emptied, all previously cached flows must be re-

classified, causing a load spike in the classification engine. 

 Zeroing out the cache may cause a high amount of memory access. 

This approach mainly serves as a reference point to benchmark further algorithm 

refinement. 

2.3.4.2 Bloom Filter Aging: Double-Buffering 

If we partition the memory devoted to the cache into two Bloom filters, an active 

cache and a warm-up cache, we can more gracefully age our cache. This approach is 

similar to the one applied in Stochastic Fair Blue [feng]. The basic algorithm is given in 

Figure 13. The goal of this approach is to avoid the high number of cache misses 

immediately following cache flush, which occurs when the cache is full and older, stale 

entries must be evicted. By switching to a background cache, we can start from a 

“warmed-up” state. This approach can be thought of as an extremely rough 

approximation of LRU. 

However, this approach also has its drawbacks: 

 Doubling the memory requirement to store the same number of concurrent flows, 

as compared to the cold-cache case. 
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 Zeroing out the expired cache still causes a load spike in the use of the memory 

bus (although it is a smaller spike). This can be partially mitigated by slowly 

zeroing out memory. 

  If the instantaneous number of concurrent flows, kinst, is greater than kmax, this 

system will observe severe thrashing. Spikes in cache miss rates may be observed 

whenever kinst > kmax / 2 , depending on flow duration and packet inter-arrival 

rates 

 The simplest, naive implementations of this algorithm will double the number of 

memory accesses required to store a new flow. This performance loss can be 

when a new packet arrives 

    if the flow id is in the active cache 

        if the active cache is more than ½ full 

            insert the flow id into the warm-up cache 

        allow packet to proceed  

    otherwise 

        perform a full classification 

        if the classifier allows the packet 

            insert the flow id into the active cache 

        if the active cache is more than ½ full 

            insert the flow id into the warm-up cache 

        allow packet to proceed  

    if the active cache is full 

        switch the active cache and warm-up cache 

        zero out the old active cache 

Figure 13: Pseudocode for double-buffer aging algorithm for Bloom filters 
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recovered by memory aligning the two bloom filters, so that fetching a word of 

memory will return the bit states of both Bloom filters. 

2.4 Approximate Algorithm 2: Digest Caches 

In this section, we propose the notion of digest caches for efficient packet 

classification.  The goal of digest caches is similar to Bloom-filter caches proposed in 

Section 2.3; it trades some accuracy in flow identification in exchange for increased 

performance.   

There are two primary limitations of this Bloom filter cache design. First, each 

Bloom filter lookup requires N independent memory accesses, where N is the number of 

hash levels of the Bloom filter. For a Bloom filter optimized for a 1 in a billion packet 

misclassification probability, N=30. Second, no mechanism exists to recover the current 

elements in a Bloom filter, preventing it from using efficient cache replacement 

mechanisms such as LRU. 

Digest caches, however, allow traditional cache management policies to be 

employed to better manage the cache over time.  Instead of storing a Bloom filter 

signature of a flow identifier (source and destination IP addresses & ports and protocol 

type), it is only necessary to store a hash of the flow identifier, allowing for smaller sized 

cache entries. This idea is extended to accelerate exact caching strategies by building 

multi-level caches with digest caches in Section 2.4.4. 

Network cache designs typically employ simple set associative hash tables, an idea 

that borrowed from traditional memory management systems design.  The goal of the 
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network cache is to quickly determine the operation or forwarding interface that should 

be used, given the flow identifier.  Hashing the flow identifier allows traditional network 

processors to determine what operation or forwarding interface should be used while 

examining only a few of entries in the cache.  One significant limitation of exact- match 

caches for flow identifiers is the need to store large flow identifiers (e.g. 37 bytes for an 

IPv6 flow identifier) with each cache entry. This limits the number of flows that can be 

stored in a cache and increases the time necessary to find information in the cache. 

The most important property of a digest cache is that it stores only a hash of the flow 

identifier instead of the entire flow identifier. The goal of the digest is to significantly 

reduce the amount of information stored in the cache, in exchange for a small amount of 

error in cache lookups. Digest caches can be used in two ways. First, they can be used as 

the only cache for the packet classifier, allowing the packet classifier caches to be small. 

Second, they can be used as an initial lookup in an exact classification scenario.  This 

allows a system to quickly partition the incoming packets into those that are in the exact 

cache and those that are not, as well as identifying likely match locations in the exact 

cache. 

Digest caches are superior to Bloom caches in two ways. First, cache lookups can be 

performed in a single memory access. Second, they allow direct addressing of elements, 

which can be used to implement efficient cache eviction algorithms such as LRU. 

2.4.1 Dimensioning the Digest Cache 

The idea of a digest cache is to compare compact hashed flow identifiers to match 

cached flows, instead of comparing the larger full flow identifiers. In a sense, this scheme 
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trades the accuracy of the cache for a reduced storage requirement. Cache memory is 

partitioned in a similar manner to a traditional, set-associative cache. When dimensioning 

the set-associative cache, we need to decide what level of associativity to use. Previous 

work has demonstrated that higher cache associativity yields better cache hit-rates 

[jain][li]. However, unlike a traditional exact set associative cache, in the case of the 

digest cache, an increase in the degree of associativity must be accompanied by an 

increase in the size of the flow identifier’s hash to compensate for the additional 

probability of collision. If the digest is a c-bit hash, and we have a d-way set associative 

cache, then the probability of cache misidentification is 

   
 

  
 ( 22 ) 

Equation 22 can be described as follows: Each cache line has d entries, each entry of 

which can take 2
c
 values. A misclassification occurs whenever a new entry has 

coincidentally the same hash value as any of the existing d entries. We must employ a 

stronger hash to compensate for increasing collision opportunities (associativity). 

Figure 14 graphs the number of flows that a 4-way set associative can store, 

assuming different misclassification probability tolerances.  The maximum number of 

addressable flows increases linearly with the amount of memory and decreases 

logarithmically with the packet misclassification rate. 

2.4.2 Theoretical Comparison of Bloom Filters with Digest Caches 

To achieve a misclassification probability of one in a billion, a Bloom filter cache 

must use 30 independent hash functions to use memory optimally. This allows us to store 

a maximum of kbloomcache flows in our cache, 
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   (      )

   (     )
 ( 23 ) 

where L = 30, the number of hash functions, M, the amount of memory in bits, and p, the 

misidentification probability. To directly compare this with a digest cache, the maximum 

number of flows that our scheme can store, independent of the associativity, is given by  

         
 

 
 ( 24 ) 

where the required number of bits in the digest function is given by 

   ⌈    (  ⁄ )⌉ ( 25 ) 

This relation between kbloomcache and kdigest dependent on p, the misidentification 

probability and d, the desired level of cache set associativity.  

Figure 15 compares the storage capacity of both caching schemes. Both schemes 

linearly relate storage capacity to available memory, but it is important to note that 

simply storing a hash is more than 35% more efficient in terms of memory use than a 

Bloom filter, for this application. One property that makes a Bloom filter a useful data 

 

Figure 14:   Maximum number of flows that can be 

addressed in a 4-way set associative digest cache, 

with different misclassification probabilities, p 

 

Figure 15:   Comparison of storage capacity of 

various caching schemes. The Bloom filter cache 

assumes a misidentification probability of one in a 

billion, which under optimal conditions is modeled 

by a Bloom filter with 30 hash functions. 
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structure is its ability to insert an unlimited number of signatures into the data structure, 

at the cost of increased misidentification. However, since we prefer a bounded 

misclassification rate, this property is of no use to the solution to our problem. 

2.4.3 A Specific Example of a Digest Cache 

To illustrate the operation of a digest cache, we will construct an example 

application of a digest cache. Consider a router with 16 interfaces and a set of 

classification rules. We begin by assuming that we have 64KB of memory to devote to 

the cache and wish to have a 4-way associative cache that has a misclassification 

probability of one in a billion. These parameters can be fulfilled by a 32-bit digest 

function, with 4 bits used to store per-flow routing information. Each cache entry is then 

36 bits long, making each cache line 144 bits (18 bytes). 64KB of cache memory 

partitioned into 18-byte cache lines, gives a total of 3640 cache lines, which allows our 

cache to store 10920 distinct entries. A visual depiction of this cache is given in Figure 

16. 

Overview of Digest Cache: 

entry 0 entry 1 entry 2 entry 3 

entry 4 entry 5 entry 6 entry 7 

Cache Line 0       { 

Cache Line 1       { 

 

 

Cache Line 3639 { entry 109116 entry 109117 entry 109118 entry 109119 

 

 

Figure 16: An overview of 64KB 4-way set associative digest cache, with a misclassification probability of 

1 in a billion. This cache services a router with 16 interfaces. 

32-bit digest          4-bit route 
Contents of cache 

entry 
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Now, consider a sample trace of the cache, which is initially empty. Suppose 2 

distinct flows, A and B. 

1. Packet 1 arrives from flow A. 

a. The flow identifier of A is hashed to H1(A) to determine the cache line to 

look up. That is, H1 is a map from flow identifier to cache line. 

b. A is hashed again to H2(A) and compared to all four elements of the cache 

line. There is no match. The result, H2(A), is the digest of the flow 

identifier that is stored. 

c. A is classified by a standard flow classifier, and is found to route to 

interface 3. 

d. The signature H2(A), is placed in cache line H1(A), along with its routing 

information (Interface 3). 

e. The packet is forwarded through interface 3. 

2. Packet 2 arrives from flow A. 

a. The flow identifier of A is hashed to H1(A) to determine the cache line to 

look up. 

b. A is hashed again to H2(A) and compared to all four elements of the cache 

line. There is a match, and the cache indicates the packet should be 

forwarded through interface 3. 

c. The packet is forwarded through interface 3. 

3. Packet 3 arrives from flow B. 

a. The flow identifier of B is hashed to H1(B) to determine the cache line to 

look up. Coincidentally, H1(A) = H1(B). 
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b. B is hashed again to H2(B) and compared to all four elements of the cache 

line. Coincidentally, H2(A) = H2(B). There is a false-positive match, and 

the cache indicates the packet should be forwarded through interface 3. 

The probability that this sort of misclassification occurs is approximately 

4/2
32

 ≈ 10
-9

. 

c. The packet is forwarded through interface 3. 

In the absence of false-positive matches, this scheme behaves exactly as a 4-way set 

associative cache with 14560 entries (3640 cache lines). Using an equivalent amount of 

memory (64 KB) a cache storing IPv4 flow identifiers will be able to store 4852 entries 

(1213 cache lines), and a cache storing IPv6 flow identifiers will be able to store 1744 

entries (436 cache lines). 

The benefit of using a digest cache is two-fold. First, it increases the effective 

storage capacity of cache memory, allowing the use of smaller, faster memory. Second, it 

reduces the memory bandwidth required to support a cache by reducing the amount of 

data required to match a single packet. As intuition and previous studies would indicate, a 

larger cache will improve cache performance [jain][li][partridge]. To that end, in this 

example, the deployment of a digest cache would have the effect of increasing the 

effective cache size by a factor of between 3 and 8. 

2.4.4 Exact Classification with Digest Caches 

Digest caches can also be used to accelerate exact caching systems, by employing a 

multi-level cache (Figure 17). A digest cache is constructed, in conjunction with an exact 

cache that shares the same dimensions (in number of cache lines and set associativity). 
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While the digest cache only stores a hash of flow identifiers, the exact cache stores the 

full flow identifier. Thus, the two hierarchies can be thought of as “mirrors” of each 

other. 

A c-bit, d-way set associative digest cache implemented in a sequential memory 

access model will be able to reduce the amount of exact cache memory accessed (due to 

cache misses) by a factor of 

               
 

  
 ( 26 ) 

while the amount of exact cache memory accessed by a cache hit is reduced by a factor of 

              
 

 
 

 

  
 

   

 
 ( 27 ) 

The intuition behind Equation 27 is that each cache hit must access the exact flow 

identifier, while each associative cache entry has an access probability of 2
-c

. Note the 

digest cache allows for multiple entries in a cache line to share the same value because 

the exact cache can resolve collisions of this type. Since this application relies on hashing 

strength only for performance acceleration and not for correctness, it is not necessary to 

have as strong a misclassification rate. 

 

Figure 17: A multi-level digest-accelerated exact cache. The Digest cache allows filtering potential hits 

quickly, using a small amount of faster memory. 
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A multi-level 8-bit 4-way set associative digest-accelerated cache will incur a 4-byte 

first level lookup overhead. However, it will reduce second level memory access cost of 

an IPv6-bit cache miss look up from 148 bytes to 37.4 bytes, and a cache miss look up 

from 148 bytes to .6 bytes. Assuming a 95% hit rate, the average cost of cache lookups is 

reduced to 4 bytes of first level cache and 35.6 bytes of second level cache. 

2.5 Performance Evaluation of Approximate Caching Strategies 

 Two network traces were used to evaluate the effectiveness of the proposed caching 

strategies. Each of the two datasets represents a one-hour network trace. The first of the 

datasets was collected by Bell Labs research, Murray Hill, NJ. This dataset was made 

available through a joint project between NLANR PMA and Internet Traffic Research 

Group [bell]. The trace was from a 9 Mb/s link, consisting only of IP traffic, serving a 

staff of 400 people. The second trace was a non-anonymized trace collected at the OGI 

Trace Length 3600 s 

Number of Packets 974613 

UDP Packets 671471 

TCP Packets 303142 

Number of Flows 32507 

Number of TCP Flows 30337 

Number of UDP Flows 2170 

Avg. Flow Length 23.2654 s 

Avg. TCP Flow Length 13.8395 s 

Avg. UDP Flow Length 155.041 s 

Longest Flow 3599.95 s 

Avg. Packets/Flow 29.9816 

Avg. Packets/TCP Flow 9.99248 

Avg. Packets/UDP Flow 309.434 

Max # of Concurrent Flows 268 

Table 1: Bell Labs research trace 

Trace Length 3600 s 

Number of Packets 15607297 

UDP Packets 10572965 

TCP Packets 5034332 

Number of Flows 160087 

Number of TCP Flows 82673 

Number of UDP Flows 77414 

Avg. Flow Length 10.2072 s 

Avg. TCP Flow Length 11.2555 s 

Avg. UDP Flow Length 9.08774 s 

Longest Flow 3600 s 

Avg. Packets/Flow 97.4926 

Avg. Packets/TCP Flow 60.8945 

Avg. Packets/UDP Flow 136.577 

Max # of Concurrent Flows 567 

Table 2: OGI OC-3 trace 
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OC-3c link. This link connects with Internet2 in partnership with the Portland Research 

and Education Network (PREN). This trace captured a portion of an active Half-life game 

server (an example of an interactive virtual world), whose activity is characterized by a 

moderate number (~20) of long-lived small high packet-rate UDP flows. Table 1 and 

Table 2 present a summary of the statistics of these two datasets. A graph of the number 

of concurrent flows is shown in Figure 18. The Bell trace is much smoother, while the 

OGI trace contains roughly twice as many concurrent flows. 

For the purposes of our analysis, a bi-directional flow is considered as 2 independent 

flows. A flow begins when the first packet bearing a unique 5-tuple (source IP address, 

destination IP address, protocol, source port, destination port) arrives at the node. A flow 

ends when the last packet is observed, or after a 60 second timeout. This number is 

chosen in accordance with other measurement studies [fraleigh] and observations in the 

field [iannaccone][mccreary].  

 

Figure 18: Number of concurrent flows in test data sets  
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As a reference benchmark, we introduce the idea of a perfect cache – a fully 

associative cache, with an infinite amount of memory. This cache takes only the 

theoretical minimum cache misses (compulsory cache misses). The fundamental 

performance statistics are reported in Table 3. The Bell trace is characterized by having 

more long-lived low-traffic flows, and so receives relatively few cache misses over a 

given time interval. Despite this, the cache hit rate is just 97%, because of the relatively 

few packets per flow there are. The OGI trace has roughly twice as many concurrent 

flows, and is characterized by having higher-traffic, short lived flows. As a result, the 

OGI trace has nearly 13 times as many cache misses, but achieves a cache hit rate of 

99%. 

For a comparison with exact caching schemes, we simulate a fully associative cache 

using an LRU replacement policy. LRU was chosen because of its near-optimal caching 

performance in networking contexts [jain]. This simulation is intended to represent best-

case exact caching performance, even though it is infeasible to implement a fully 

associative cache on this scale. 

2.5.1 Bloom Filter Cache Evaluation 

For the reference implementations in this study, we use the SHA1 hash function 

[sha]. It should be noted that the cryptographic strength of the SHA1 hash does not 

 Bell Trace OGI Trace 

Hit Rate 0.9714 0.9877 

Maximum misses (over 100 ms intervals) 6 189 

Variance of misses (over 100 ms intervals) 1.35403 17.4375 

Average misses (over 100 ms intervals) 0.7749 5.8434 

Table 3: The results of a perfect cache 
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increase the effectiveness of our implementation, because the hashed result does not have 

to be resistant to cryptographic inspection. Any universal hash functions will be equally 

effective for this use [carter]. It is important to recognize that other, faster hashing 

algorithms exist, and using a hardware-based hashing implementation is possible. For 

example, the IXP1200 architecture [ixp] has a hardware hashing unit that is suitable for 

this use, and can complete a hashing operation every nine clock cycles. 

For the purposes of this study, we use a misclassification probability of 1 in a billion. 

The reasoning behind this choice of misclassification probability is presented in Section 

2.2.1. This misclassification rate should have a completely negligible effect on the utility 

and performance of the network. 

2.5.1.1 Bloom Filter Cold Caching Evaluation 

With the Bell dataset, using 4 KB of cache memory and a misclassification 

probability of 1e-9 the cold cache performs reasonably with respect to the overall cache 

hit rate. The optimal dimensions for a Bloom filter this size should have 30 hash 

 

Figure 19:  Comparing cold cache and double-buffered bloom caches using 4 KB of memory (Bell dataset) 
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functions, storing a maximum of 611 flows. Throughout the 1-hour trace, there were no 

misclassifications and an overall cache hit-rate of 95.1529%. Aggregated over 100ms 

intervals, there were a maximum of 8 cache misses/100ms, with an average of 1.31668 

and a variance of 10.3272.  

Figure 19 illustrates the cache misses during a portion of the trace.  We can see that 

emptying the cache corresponds to a spike in the amount of cache misses that is not 

present when using a perfect cache (Figure 20). This spike is proportional to the number 

of concurrent flows at the time of cache flushing. This type of behavior will apply undue 

pressure to the classification engine, resulting in overall performance degradation. 

2.5.1.2 Bloom Filter Double-Buffering Cache Evaluation 

Using a double-buffered approach can smooth the spikes in cache misses associated 

with suddenly emptying the cache. Double-buffering effectively halves the amount of 

immediately addressable memory, in exchange for a smoother aging function. As a result, 

 

Figure 20: Cache Misses using a perfect cache (Bell dataset) 
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this bloom filter was only able to store 305 flows for a 4096 byte cache, in comparison 

with the 611 flows of the cold-cache implementation. This implementation also had a 

slightly lower hit rate of 95.0412% with the Bell dataset. However, we succeeded in 

reducing the variance to 5.43722 cache misses per 100ms, while maintaining an average 

cache miss rate of 1.34251 per 100ms. Reviewing Figure 19, we can see that the 

correspondence between cache aging states and miss rates does not correspond to 

performance spikes as prevalently as in the cold cache implementation. 

This implies that the double-buffered approach is an effective approach to smoothing 

out the performance spikes present in the cold cache algorithm. To better quantify the 

“smoothness” of the cache miss rate, we graph the variance, and average miss rates 

(Figure 21 and Figure 22). From these graphs, we observe that for a memory-starved 

system, the cold-cache approach is more effective with respect to cache hit-rates. It is 

surprising how effective this naïve caching strategy is, with respect to overall cache 

performance. Moreover, we note that it performs better than both an IPv6 and IPv4 exact 

 

Figure 21:  Cache hit rates as a function of memory, M 
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cache, with both datasets for a memory starved cache, and keeps pace as memory 

improves. As the amount of memory increases, we can see that the double-buffered 

approach is slightly more effective in reducing the number of cache misses. 

Looking to Figure 23, we observe that the variance in miss rates decreases much 

faster in the double-buffered case than in the cold-cache approach. This is because of the 

removal of cache miss “spikes” that occur during cache flushing, due to the need to 

suddenly repopulate the cache. It is interesting to note that in the OGI trace, the variance 

actually increases, before it decreases. Comparing Figure 22 and Figure 23, this implies 

that for a very memory-starved system, the variance is low because the cache miss rate is 

uniformly terrible. 

Comparing the double-buffered approximate cache implementation to exact caching 

gives comparable performance when considering an IPv4 exact cache even though the 

approximate approach can cache many more flows. This is due to the imprecision of the 

aging algorithm – an LRU replacement policy can evict individual flows for replacement, 

 

Figure 22: Average cache misses as a function of memory, M (aggregate over 100ms timescales) 
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whereas a double-buffered approach must evict ½ of the cached flows at a time.  

However, when considering IPv6 data structures, this disadvantage is overshadowed by 

the pure amount of storage capacity a Bloom filter can draw upon. 

In all of these experiments, the behavior of each of the systems approaches the 

theoretical optimum cache performance as memory increases. This implies that our 

algorithm is correct and does not suffer fundamental design issues. 

2.5.2 Digest Cache Performance Evaluation 

The digest cache presented in this evaluation was chosen to be a four-way set 

associative hash table, using 32-bit flow identifier digests. Each lookup and insertion 

operation requires a single 16-byte memory request. An LRU cache replacement 

algorithm was chosen, due to its low cost complexity and near-optimal behavior [jain]. 

Figure 24 graphs the behavior of digest caches with different set associativities. By 

increasing the level of set-associativity of the cache, thrashing is reduced because of the 

reduction in cache contention. However, increasing the level of set-associativity also 

 

Figure 23: Variance of cache misses as a function of memory, M (aggregate over 100ms timescales) 
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increases the amount of memory required to support that level of associativity, as well as 

the amount of cache memory that must be examined on each cache query operation. We 

observe from the graph that the effective performance of the cache increases very little 

after the level of set-associativity increases past four. This is consistent with other 

experimental observation [li]. 

We also compare our cache against a traditional four-way set associative layer-4 

IPv4 and IPv6 based hash tables. Each lookup and insertion operation requires a single 

52-byte or 148-byte memory request, respectively. Hashing for all results presented in 

this evaluation was accomplished with a SHA-1 hash [sha].As is with the Bloom filter 

evaluation (Section 2.5.1), the cryptographic strength of the SHA-1 hash is not an 

important property of an effective hashing function in this domain and it is sufficient that 

it is a member of the class of universal hash functions [carter]. 

 

Figure 24:  Hit Rates for digest caches, as a function of memory for various set associativity, assuming a 

misclassification rate of 1 in a billion 
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2.5.2.1 Digest Cache Results 

 In evaluating the performance of the caching systems, we must consider two 

criteria; we must examine the overall hit-rate as well as the smoothness of the cache miss 

rate.  A cache that has large bursts of cache misses has low utility, because it places a 

high amount of stress on the packet classification engine. 

Figure 25 graphs the resulting hit rate of various caching strategies, using the sample 

traces. As expected, the digest cache scores hit-rates equivalent to an IPv6 based cache 

ten times its size. More importantly, the digest cache still manages to perform well when 

compared with a Bloom filter cache. The digest cache yields an equivalent hit rate of a 

cold-caching Bloom filter 50-80% its size, and out-performs a double-buffered Bloom 

filter cache 2-3 times its size.  

 

Figure 25: Cache hit rates as a function of memory, M . The Bell trace is on the left, the OGI trace is on the 

right 
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Figure 26 graphs the variance of cache miss rates of the different caching 

approaches, aggregated over 100ms intervals. As can be observed from the two traces, a 

digest cache gives superior performance, minimizing the variance in aggregate cache 

misses.  For extremely small cache sizes, the digest cache exhibits a greater variance in 

hit rate than almost all other schemes. This can be attributed to the fact that the other 

algorithms, in this interval, behave uniformly poor by comparison. 

As the cache size increases, this hit rate performance improves, and the variance of 

cache miss rates decreases to a very small number. This is an important observation 

because it implies that cache misses in these traces are not dominated by bursty access 

patterns, which would place a high amount of pressure on the packet classifier. 

To consider a more specific example, we have constructed a 2600 byte 4-way set 

associative digest cache. This number was chosen to be coincidental with the amount of 

 

Figure 26: Variance of cache misses as a function of memory, M (aggregate over 100ms time scales). The 

Bell trace is on the left, the OGI trace is on the right . 
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local memory available to a single IXP2000 family micro-engine [ixp]. Figure 27 

presents a trace of the resulting cache miss rate, aggregated over one-second time 

intervals. This graph represents the number of packets a packet classification engine must 

process within one second to keep pace with the traffic load. As can be observed from the 

plot, a packet classification engine must be able to classify roughly 60 packets per second 

(pps) in the worst case for the Bell trace, and 260 pps in the worst case for the OGI trace. 

Average packet load during the entire trace is 270.7 and 4335.4 pps for the Bell and OGI 

traces respectively. The peak packet rate for the Bell trace approached 1400 pps, while 

the peak rate for the OGI trace exceeds 8000 pps. 

By employing a 2600 byte digest cache, the peak stress level on the packet 

classification engine has been reduced by a factor of between 20 and 30 for the observed 

traces. 

 

Figure 27:  Cache miss rates aggregate over 1 second intervals, using a 2600 byte 4-way set associative 

digest cache. The Bell trace gave a 95.9% hit rate, while the OGI trace achieved a 97.6% hit rate. 
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2.5.3 Hardware Specific Implementation 

A preliminary implementation on Intel’s IXP1200 Network Processor was 

constructed, to estimate the amount of processing overhead an approximate cache would 

add [ixp]. The IXP1200 has a 3-level memory hierarchy: scratchpad, SRAM and 

SDRAM, each having 4KB, 16MB and 256MB respectively. Scratchpad memory is the 

fastest of the three, but does not support queued memory access – subsequent scratchpad 

memory accesses block until the first access is complete. The IXP micro-code allows for 

asynchronous memory access to SRAM and SDRAM. The typical register allocation 

schema allows for a maximum of 32 bytes to be read per memory access. 

The hardware tested was an IXP1200 board, with a 200 MHz StrongARM, 6 packet-

processing micro-engines and 16 Ethernet ports. The implementation’s input buffers were 

kept constantly filled, and we monitored the average throughput of the system. A simple 

micro-engine level layer-3 forwarder was implemented as a baseline measurement. A 

cache implementation was then grafted onto the layer-3 forwarder code base. A null-

classifier was used, so that we could isolate the overhead associated with the cache 

lookup function. No aging function was used for the Bloom Filter caches. The cache was 

placed into SRAM because the scratchpad does not support queued memory access which 

prevents the multi-processing power of the IXP design to be used, and the SDRAM 

interface does not support atomic bit-set operations which are needed to resolve 

concurrency issues in the multi-processing design. 

The performance of our implementation was evaluated on a simulated IXP1200 

system, with 16 virtual ports. The implementation’s input buffers were kept constantly 

filled, and we monitored the average throughput of the system. The Bloom Filter 
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implementation was modified into two separate configurations to generate performance 

results. The first configuration simulates a no-miss cache. Each packet processed by the 

IXP would go through a full cache lookup with no shortcutting. Regardless of the result, 

the packet would be processed without adding (or re-adding) its signature to the cache. 

In the second implementation, an all-miss cache was also constructed. All processed 

packets would always have their packet header digests added to the Bloom filter, 

regardless of the result of the packet lookup. The design ensured that no flow identifier 

was successfully matched, and each packet required an insertion of its flow ID into the 

cache. The code was structured in a way to disallow any shortcutting or early negative 

membership confirmation. This was done so that the worst possible performance of a 

Bloom filter cache could be ascertained. In this manner, we can determine an upper and a 

lower bound on the IXP’s performance, presented in Table 4. The trace was composed 

entirely of small, 64-byte packets as is typical of virtual world update packets. 

This implementation used the hardware hash unit. In this case, four hashes are as 

computationally expensive to calculate as one, because we simply use different portions 

of a single hashing result to implement multiple hash functions. This implementation 

appears to be SRAM limited – in the logged traces, we often note that the SRAM access 

queues are filled, stalling even asynchronous SRAM accesses. 

Number of Hash Levels No-Miss Cache Throughput All-Miss Cache Throughput 

0 990 Mb/s 990 Mb/s 

1 830 Mb/s 770 Mb/s 

2 772 Mb/s 748 Mb/s 

3 740 Mb/s 733 Mb/s 

4 612 Mb/s 605 Mb/s 

Table 4: IXP implementation overhead for Bloom filter caches 



www.manaraa.com

57 

 

 

 

A digest-cache was also constructed. Using the experimental results as a guide, a 

four-way set associative digest cache using 32-bit flow identifier digests placed in SRAM 

was constructed. This implementation was able to maintain a sustained average no-miss 

throughput of 803 Mb/s and all-miss throughput of 797 Mb/s. This implementation is 

roughly equivalent to a Bloom Filter using two hash levels, which is an inefficient design 

for a Bloom Filter using a targeting misclassification rate of one in a billion – ideally, 

there would be 30 hash levels. Given a 16MB SRAM store, and a 1e-9 misclassification 

rate, this Bloom filter could only store 2122 flow identifiers (Equation 23). A digest 

cache with the same memory constraints could store 4194304 flow identifiers, and would 

be easier to augment to store more flow meta-information, such as output routing 

interface numbers, or NAT flow ID translation parameters. 

The IXP is far from an ideal architecture to implement a Bloom filter in large part 

due to its lack of small, high-speed bit-addressable on-chip memory. Ideally, a Bloom 

filter would be implemented in hardware that supports parallel access on bit-addressable 

memory [sanchez]. 

2.6 Conclusion 

Online virtual worlds typically have different packet traffic distributions than the 

majority of Internet traffic, and are characterized by having frequent small updates. To 

help process the high packet-rate traffic generated by these applications, network devices 

can employ a packet classification cache. In this chapter, we have proposed and explored 

two different mechanisms for efficiently and effectively using memory, given a slightly 
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relaxed accuracy requirement. Performance of any existing flow caching solution that 

employ exact caching methods can be dramatically improved by employing these 

techniques, at the sacrifice of a small amount of accuracy. With the deployment of IPv6 

and the storage required to support the caching of its headers, such a trade-off will 

become increasingly important. The digest caching solution proposed in this chapter is 

able to service nearly an order of magnitude more flows than its exact-caching 

counterpart by allowing a cache misclassification rate of one in a billion.  

This technique can be applied to the design of a novel 2-level exact cache which can 

take advantage of a hierarchical memory structure to accelerate exact caching algorithms. 

By adding a small (approximately 1/40
th

 the size) digest cache to a more traditional n-

way set associative IPv6 cache, we can reduce the amount of exact cache memory that is 

required to be accessed on a cache hit by 1/n, and by a cache miss to nearly 0.  

The digest caching approach is superior to the Bloom filter approximate caching 

algorithm, in both theoretical and practical performance while also addressing the 

shortcomings in the Bloom Filter cache design without introducing any additional 

drawbacks. 

2.7 Future Work 

The work presented in this chapter assumes that memory used to support the packet 

classification cache is homogeneous, or in the case of using a digest cache as an 

acceleration structure for an exact cache, potentially using two different kinds of memory 

with different access speeds and sizes. There is room to be explored in modifying this 
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algorithm to be better suited to taking advantage of heterogeneous memory types. If the 

memory used to support the packet classification cache is accessed through a multi-level 

cache (as would be the case in a modern CPU cache) it may be possible to reorganize the 

cache to provide better spatial locality so that the multi-level cache is more effective.  It 

may also be possible to use different kinds of memory, such as content addressable 

memory to accelerate this algorithm. 
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Chapter 3 Terrain Data Representation and Streaming 
 

Virtual reality systems [active][croquet][gearth][wwind][wow][sl] have risen in 

popularity with readily available high-speed networking and affordable consumer 

computer graphics processing hardware. However, the deployment of networking 

hardware has not kept pace with the increasing quality, quantity and complexity of 

visualization data.  Even with these advances, the increasing level of detail of virtual 

environments can easily consume any additional gains in bandwidth. In a virtual world or 

client/server video game, world information such as buildings, map and terrain are stored 

in a remote central server. Clients or players connecting to the virtual space will need to 

download the virtual world in a manner that maximizes interactivity – the world should 

be progressively streamed to minimize pre-buffering delay and should quickly converge 

to a high-quality scene rendering. In a large dynamic virtual world, the environment data 

must be downloaded on-demand, rather than before runtime, because the data can be 

prohibitively large and constantly changing. 

To provide a high quality interactive experience for the user, we need to devise 

techniques and algorithms that are aware of networking limitations to deliver a maximal 

quality model of the world for the remote viewing client to render in as short a time as 

possible. These models should be transmitted progressively, in a compact form that 

allows the quality of the models to increase as time goes forward and more data is 

transferred. To best prioritize the portions of graphical data to send, the server should 

consider the remote client’s viewpoint. 
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It is important to realize that streaming virtual world information cannot use 

traditional video streaming algorithms. In a video stream, the data is quality-adaptive to 

available bandwidth, but is relatively constant in data rate and the data can be discarded 

after the user has viewed that portion of video. Video streaming has a more constant cost, 

in terms of network bandwidth requirements. In a virtual world context, data that is sent 

to the client can be cached and used for future use as the user explores and revisits that 

section of the world, only needing to update the cache when the world changes. 

Streaming data for virtual worlds will not require as much bandwidth after the user has 

finished downloading all the data about their surrounding environment. 

Streaming computer graphics data is challenging because of the need to retrieve 

large triangle meshes before any display can begin.  In this chapter, we focus on the 

streaming delivery of terrain data for remote viewing. Figure 28 shows a scene with a 

rendered terrain for viewing by a user and Figure 29 shows the underlying triangle mesh 

that represents the height field of that terrain.  Due to bandwidth limitations, it is not 

possible to send the triangle/height field data all at once, and so we need to carefully 

choose what data to send to the client and how to prioritize the data that we do send. To 

 

Figure 28: Screenshot of a terrain fly-through 

 

Figure 29: Underlying rendered geometry 
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achieve maximal quality remote rendering, two key techniques should be employed:  

First, distant terrain details and data that are outside the user’s viewing frustum should be 

transmitted with a low priority. Second, terrain data that has a larger impact on the 

client’s view, such as rocky terrain with many distinguishable features and areas nearer 

the viewer, should be streamed to the client with high priority.  

This thesis proposes borrowing techniques from the lossy image compression 

domain to implement a novel technique of progressive terrain streaming over a network. 

By using a progressive streaming format to represent the height fields for terrain data, 

this approach allows client viewers to begin rendering the visual field almost immediately 

while capturing the essence of the terrain being represented. As the visualization 

progresses, more detail is streamed to a viewing client to improve the rendering accuracy 

of the scene. Using the Grand Canyon terrain data set [usgs], we compare the efficacy of 

using an approximate-algorithm based approach with a lossless terrain streaming 

algorithm.  Our results show that we can present the user with a high quality interactive 

experience with smaller delay than would be possible using an exact-representation 

approach. 

The goal of this work is to provide a quality-aware framework for remote 3-D 

rendering of height fields in a client/server model. In this study, the basic assumptions for 

modeling the interactive virtual world system are that local storage and computing power 

are large relative to network bandwidth, the network is reliable, and the network delivers 

all packets with minimal latency. These assumptions are chosen to reflect the goal of this 

research – to construct an algorithm that can deliver a high-quality 3D reconstruction of a 

terrain over constrained network infrastructure. The architectural model we follow is to 
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construct a single server and client. The server stores all the world data and transmits it to 

the client in a quality-aware manner. The client is responsible for rendering the scene and 

sending viewer update information to the server. 

Section 3.1 explores related work in the areas mesh simplification, and network 

streaming computer graphics. Section 3.2 outlines an experimental framework for 

evaluating the efficacy of a terrain streaming algorithm. Section 3.3 describes non-

streaming reference algorithms, from which to compare the performance of proposed 

algorithms. Section 3.4 gives an exact-representation terrain streaming algorithm. Section 

3.5 proposes and evaluates various strategies for an approximate algorithm approach to 

the terrain streaming problem. 

3.1 Related Work 

In practice, to display terrain data to a viewer, terrains are rendered to a display as 

triangle meshes (Figure 29). This is often a large amount of information, which is too 

dense for a computer’s graphics hardware to render in real-time. 

From the computer graphics field, a significant amount of work has been done to 

allow variable level-of-detail (LOD) rendering to alleviate the burden on computer 

graphics hardware, using progressive meshing techniques. Most of the work in this area 

focuses on arbitrary 3-dimensional meshes, as opposed to specific optimizations for 

height fields, which are explored in this chapter. Moreover, the viewer’s perspective is 

usually not taken into account, resulting in suboptimal viewer-independent streaming 

algorithms [allies][chen][isenburg]. These techniques are done only to reduce the burden 
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on the local graphics rendering hardware and cannot easily be adapted to rendering 

partial data, view-dependent refinement, and data that needs to be transmitted across a 

limited-bandwidth network to render. 

When dealing with triangle-based meshes, one technique to simplify the overall 

geometrical complexity of a model is to use triangle decimation [schroeder]. This 

technique simplifies triangle-based meshes by combining adjacent triangles into a single 

larger and simpler triangle. For local real-time terrain rendering, this triangle-decimation 

technique has been adapted so that a terrain mesh can be simplified in real-time, termed 

“Real-time Optimally Adapting Meshes” (ROAM) [duchaineau][turner]. This approach 

organizes data into a binary triangle tree that allows progressive refinement of the data by 

visiting deeper nodes of the tree. By balancing the triangle rendering budget with the 

estimated visual importance of refining a specific area of the triangle mesh, a simplified 

viewer-adapted mesh representing the terrain can be rendered in real-time. 

A network-aware transport protocol has been shown to significantly improve the 

speed and quality of progressive streaming in image data by explicitly modelling packet 

loss and performing out-of-order data processing [raman]. This approach improves the 

latency of progressive refinement. However, it does not consider view-dependent 

prioritization of regions of interest which can be inferred from an understanding of the 

three dimensional nature of the streaming data.   

Several systems have been implemented for the streaming of computer graphics data.  

Second Life [sl] is a massively multiplayer online dynamic virtual world that allows users 

to explore a large three-dimensional space, where players can create, interact with, and 

exchange virtual items. Objects are described using a primitive constructive solid 
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geometry model. Terrain and map information are sent in 16x16 tiles using a non-

progressive JPEG-like encoding. In Second Life, the tiles are frustum-culled, so that only 

potentially visible tiles are sent, and tiles closest to the viewer are delivered first. This 

terrain encoding is not very efficient and is described in more detail in Section 3.3.1. 

These encoded tiles are used to render the terrain using a simple triangle-splitting 

algorithm based on an exponential distance metric. In OpenSimulator (Second Life’s 

open-source counterpart), tiles are sent in row-major order (typewriter fill) with no 

consideration to the viewer’s location or orientation [opensim]. 

In its original incarnation, Google Earth, a client/server virtual mapping program, 

used a similar approach, using frustum-culled non-progressive terrain-tile streaming 

system. Unlike Second Life, the streaming algorithm did not prioritize tiles based on the 

proximity to the viewer, sometimes resulting in distant terrain geometry being sent before 

nearby terrain data. 

For streaming terrain, multi-resolution bitmaps for progressive rendering have also 

been employed.  The data can be organized in a quad-tree structure, with each child node 

representing a refinement of one-quarter of the space [reddy]. This approach only 

considers viewer’s location into account when streaming, without considering the visual 

importance of the existing geological features in the data. This approach has been 

extended by considering terrain complexity and culling terrain tiles outside the viewer’s 

frustum, but not by prioritizing information based on viewer distance [tsai]. 

 The strip mask approach to terrain streaming scheme divides the terrain into square 

tiles, attempting to pre-cache visible areas around the viewer [pouderoux]. This approach 

tries to minimize computational complexity for CPU-constrained devices by compiling 
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terrain patches into display lists which can be quickly re-rendered by graphics hardware 

on successive frames. There is no data compression used in this approach, and 

progressive refinement is accomplished through sending triangle strips representing a 

new refinement level. More detail geometry can only be added on a per-patch basis, not 

on a per-vertex basis.  

3.2 Framework for Experimental Evaluation  

To evaluate the performance of a terrain streaming algorithm, we have constructed a 

simulated client viewing a fly-through of a landscape streamed from a remote server. 

This gives us the ability to analyze the visual quality of the streaming simulation, as 

viewed by a real interactive user (Figure 28). The client is implemented in OpenGL, 

rendering various fly-throughs of the terrain, in a 640 x 480 viewport. The rasterized 

output rendering by the client is recorded at 25fps and captured video rendering is 

compared with a reference ideal video rendering. The reference ideal video rendering is 

constructed by pre-downloading the entire terrain dataset, and rendering the fly-through 

in full quality, without any LOD simplification. 

The results of these simulations are compared with this reference ideal video 

rendering using the peak signal to noise ratio (PSNR) metric. This PSNR metric will 

represent the visual quality of the streamed simulation compared to its exact fully-

detailed representation. PSNR metrics are commonly used to measure the quality of 

video and image reconstruction when employing lossy compression codecs and is 

calculated by comparing a lossy reconstruction of an image and its original, and is 
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represented using a logarithmic scale expressed in decibels (dB). Given an original 

image, A, which is m × n pixels in size, and reconstructed image, B, the mean squared 

error, MSE, is 

     
 

  
∑ ∑(         )

 
   

   

   

   

 ( 28 ) 

where ai,j is the color value of pixel i,j of image A and bi,j is the color value of pixel i,j of 

image B. Then PSNR is defined as  

               (
  

   
) ( 29 ) 

where R is the maximum pixel value. In the case of an 8-bit image, R = 255. 

The reference trace is constructed by running the simulation using a full-detail 

(unlimited network bandwidth with zero latency) rendering of the fly-through. 

Subsequent simulations are compared with this reference trace using the PSNR metric 

which represents the visual quality of the streamed rendering. 

3.2.1 Underlying Network Assumptions 

The experimental framework is completely simulated in a stand-alone executable – 

the simulation models a network with zero latency and a bandwidth of 56kbps. Given our 

25fps capture rate, this effectively allows 380 bytes of data to be delivered between 

frames. The choice of a 56kbps stems from the idea that terrain data should only consist 

of a portion of a true virtual simulation’s network stream. In a realistic scenario the data 

stream would include information such as objects, vehicles, buildings, textures and 

avatars, which sometimes must be transferred using a limited-bandwidth mobile wireless 

network link [blue].  
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This simulation deals only with terrain geometry. Texture, material and lighting 

information is not sent. In practice, this information can be generated procedurally.  In 

such approaches, texture is inferred from the terrain geometry and need not be sent over 

the network. 

3.2.2 Simulation Dataset 

The simulation dataset used in this set of experiments is the Grand Canyon dataset 

from The U.S. Geological Survey (USGS) with processing by Chad McCabe of 

Microsoft Geography Product Unit [usgs]. The subset of this dataset used for simulation 

was based on a 2048x2048 grid with 8-bit height posts (Figure 30), representing an area 

of roughly 15000 km
2
. This dataset was chosen because it expresses many characteristics 

of importance when considering terrain data, such as rocky mountainous regions, cliffs, 

canyons, and relatively flat plains. To test the streaming framework, we designed three 

representative walk-throughs to measure the performance of the various algorithms under 

different scenarios. 

         

Figure 30:  USGS dataset of the Grand Canyon. The height field information is on the left (lighter shades 

represent higher altitude) and lighting information is on the right. 
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The simplest terrain flythrough simulation we use simply crosses the simulated grid 

diagonally from corner to corner (Figure 31).  This crossing is accomplished over 2048 

rendered frames. The second flythrough also traverses the terrain from corner to corner 

(Figure 31).  This flythrough is augmented by pausing in the center of the map to rotate 

the viewer 360 degrees.  This requires the streaming system to cope with a changing 

client orientation. The total length of this simulation is 2768 frames. The third walk-

through traverses the grid diagonally while continually panning over the terrain (Figure 

 

Figure 31:   The three flythrough test scenarios. The arrows represent the path and direction of the viewer 

over the terrain.  
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31) over 2048 frames.  This is the most demanding of the three walk-throughs, requiring 

the streaming solution to adapt to a constantly changing viewer location and orientation. 

3.3 Reference Algorithms  

Before considering any terrain streaming solution, it is important to first construct 

reference implementations in order to evaluate the efficacy of any proposed terrain 

streaming algorithms. 

3.3.1 Non-Streaming Reference Algorithms 

A very simple and naïve compression algorithm is to down-sample the entire 

2048x2048 dataset to 64x64 (4KB of uncompressed data, less than 3KB of lossless PNG 

compressed data) (Figure 32). This can be transferred in approximately half a second 

with a 56.6 kbps connection. Instead of progressively streaming the terrain data from the 

server to the client, this first reference implementation simply pre-loads the simplified 

representation of the terrain at the viewer, and renders this terrain. Data points between 

         

Figure 32: Visual representation of input terrain data (left) down-sampled to a 64x64 image (right). 
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samples are linearly interpolated to recover a 2048x2048 terrain dataset. If the dataset is 

treated as an 8-bit greyscale image, compared to the original raw dataset, this 

compression gives us a PSNR of 23.7015 dB. This algorithm represents the simplest, near 

worst-case performance simulation. The result of the simulation when conducted with 

this algorithm is graphed as 64x64 in Figure 33. In flythrough #1 and #2, the PSNR 

trends towards infinity towards the end of the simulation because the viewer travels 

passed the end of the terrain and there is no more data to display. In this case, the 

simulation displays the (lack of) data perfectly. 

A less naïve approach would be to encode the entire terrain data set using JPEG 

greyscale image compression, with each of the height posts encoded as an 8-bit 

luminosity value. The  JPEG encoding of the entire 2048x2048 Grand Canyon dataset, 

using a quality encoding level of 100 (maximum quality), compressed as a collection of 

32x32 tiles, resulted in 1245870 bytes (1216KB) of data with a PSNR of 59.7080 dB. If 

the entire dataset is not subdivided into tiles, and encoded as a single JPEG file, the 

output file size is 985 KB. This means that encoding overhead incurred by tiling the data 

is roughly 20%. The importance of representing the terrain as a collection of tiles will be 

explored in Section 3.5. 

The result of the simulation using this non-streaming approximate reconstruction is 

graphed as jpeg-full100 in Figure 33. This simulation is representative of a near-ideal 

terrain representation, with minimal loss of fidelity. The results are very good – the 

PSNR of the measured simulation indicates that it continually maintains a high-quality 

rendering. 
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(1) Flythrough 

 

(2) Flythrough, pausing at the midpoint to perform a 360˚ pan  

 

(3) Flythrough with a continuous 360˚ pan 

 

Figure 33: Simulation results for non-streaming algorithms. Frame number is on the X axis. The 

rendering quality of the frame (PSNR in dB) is on the Y axis.  Higher values are better. 
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If the same JPEG compression technique is used with a JPEG encoding quality value 

of 95, a comparison of the original data yields a PSNR of 53.7115dB, using a 746550 

byte  (729KB) approximate representation of the terrain. The result of this simulation is 

graphed as jpeg-full95 in Figure 33. As expected, the more compact representation of the 

terrain data yields a simulation that performs slightly worse than jpeg-full100, but more 

crucially, yields a simulation trace that performs with a PSNR quality metric of no less 

than 35 dB, which is nearly human indistinguishable from a perfect representation. Figure 

34 shows a visual representation of how the image deterioration appears for a 35 dB 

(PSNR) signal. As can be seen in these figures, the difference is minimal. Artifacts of the 

lossy compression typically manifest themselves at the edges of sharp elevation changes 

(such as mountains, cliffs, and rocky hill-sides) due to DCT quantization. In JPEG 

compression, the high-frequency DCT coefficients are quantized to achieve high levels of 

compression. 

For comparison of coding efficiency, using the 2048x2048 Grand Canyon dataset 

(4096 KB uncompressed) was only compressed to 3533 KB using Second Life’s terrain 

encoding algorithm [sl]. A PSNR difference of 57.9752 dB was measured between the 

Second-life encoded terrain data, and the original uncompressed data. The Second Life 

terrain encoding system does not yield a very high compression ratio (1.16:1), even when 

compared to JPEG at quality level 100 (3.37:1). Despite this compression-rate disparity, 

it does not seem to give a better representation of the terrain data either (PSNR of 

57.9752 dB) compared to JPEG at quality level 100 (PSNR of 59.7080 dB). 
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3.4 Exact Representation Terrain Streaming Algorithms  

Before any lossy compression algorithm can be considered, it is important to 

understand the limits of what an exact algorithm solution are. To this end, a lossless 

terrain streaming algorithm has been constructed, based on the ROAM adaptive meshing 

algorithm [duchaineau]. While ROAM was originally designed for mesh simplification in 

order to minimize the number of simultaneous rendered triangles, it can be modified for 

network streaming by allowing ROAM to only introduce refinement triangles without 

removing previously rendered high-detail triangles. The goal of this reference 

  
 

 

Figure 34:   Example showing the degradation in a 35.0dB PSNR rendering. Top Left: Image captured with 

full-detail terrain representation. Top Right: Reconstruction using compressed approximate terrain 

representation. Bottom: Pixel difference of both images. 
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implementation is to represent the result of employing an intelligent streaming algorithm 

using a verbose, non-lossy data representation. 

ROAM employs a triangle decimation technique for expressing more detail in a 

triangle-based mesh – triangles are repeatedly and recursively split into right-angle 

isosceles triangles to add additional vertices. In the coarsest representation, a ROAM 

patch is represented by two triangles. To render a more detailed mesh, a triangle may be 

split into two children triangles, introducing an additional vertex (Figure 35). Triangles 

are always split in pairs, to prevent the formation of T-junctions – visual cracks in the 

triangle mesh, formed when two neighboring triangles are rendered at incompatible detail 

levels. 

In practice, a ROAM terrain mesh is represented in memory by a binary tree, with 

each node representing a triangular area.  Each triangle is in turn represented by two 

smaller triangles that form the descendants of each node. This data structure is referred to 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35:  The recursive splitting of triangles in a ROAM terrain patch (overhead view). This example 

illustrates progressive refinement to add detail to the upper right-hand of the tile. Each vertex represents a 

rendered height post. 
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as a binary triangle tree (BTT). The BTT is constructed so that travelling down the 

branches of the tree represents progressive refinement of the terrain mesh, with each step 

increasing the visual detail that is presented to the user. 

In the implementation presented in this chapter, there are two BTTs representing the 

ROAM-encoded terrain mesh – one on the server, and one on the client. Initially, the 

server’s BTT will be fully populated with the full terrain geometry, while the client’s 

BTT will contain only the coarsest representation. Over the course of the simulation, the 

client populates its BTT until the server’s entire BTT is transmitted, at which point the 

entire terrain can be rendered from cache without the need to query the network. The 

server constructs a BTT node/vertex stream to send to the client, based on the viewer’s 

location and orientation, using a distance-variance metric for vertex prioritization. This is 

similar to the way standard ROAM implements progressive refinement. 

BTT node/vertex streaming priority is calculated by finding the variance in height of 

all the child vertices and dividing by the distance of the node from the viewer, forming a 

score for each node in the terrain mesh. This score represents a measure of the visual 

difference between the current terrain representation, and the fully-detailed terrain. Every 

node that has not yet been transmitted is placed in a priority queue for streaming to the 

client. The scores of the nodes that have not yet been transmitted are recalculated on each 

frame of the simulation and reprioritized, to ensure that the most crucial data is sent to the 

client. 
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(1) Flythrough 

 

(2) Flythrough, pausing at the midpoint to perform a 360˚ pan  

 

(3) Flythrough with a continuous 360˚ pan 

 

Figure 36: Simulation results for exact representation streaming algorithms. Frame number is on the X 

axis. The rendering quality of the frame (PSNR in dB).  Higher values are better. 
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It is important to note that this implementation is extremely server resource intensive 

and impractical to deploy in a real-world system. This implementation serves only to 

represent a best case exact representation streaming algorithm. Because the server must 

mirror the state of the binary triangle tree of each client the server is streaming to, this 

solution demands a significant amount of server resources to implement.  This may also 

present a potential synchronization problem if a client viewer is restarted using a 

previously cached partially complete BTT.  

The performance of the ROAM-based exact representation streaming algorithm is 

illustrated as roam in Figure 36. This simulation counts each vertex as 4-bytes of data (1 

byte for height, 3 bytes for XY positional information). This simulation represents the 

effect of organizing the terrain data in a streaming-friendly manner, without applying any 

compression. Although the quality of the rendering is easily recognized as imprecise to 

the human eye, it represents a significant improvement over 64x64, the non-streaming 

4KB reference algorithm. 

 For comparison, we have also simulated roammax, which is the same algorithm, but 

counts each vertex as only 1 byte of data (Figure 36).  This value was chosen in 

accordance with observed compression factors optimal under optimal conditions [alliez]. 

This four-fold improvement in compression results in a significantly increased image 

quality – at times, it is almost impossible to differentiate between the original full-detail 

rendering and the results of streamed simulations. This suggests that at this level, more 

bandwidth is incredibly helpful in improving the quality of the experience. 

The most significant feature of the ROAM-based algorithm is that it provides vertex-

level explicitness, allowing the streaming solution to add vertices/detail where they are 
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needed most. This allows the information flow to be quickly adapted to account for 

viewer location and orientation changes. 

The rendering quality of the streaming algorithms in flythrough #3 tends to oscillate 

with a period of 360 frames. This is because the viewer rotates through a 360º pan every 

360 frames, and so begins viewing terrain that has been progressively refined in the 

previous rotation cycle. 

The ROAM-based streaming techniques exhibit “popping” artifacts – temporal 

discontinuities formed by the sudden introduction of a new vertex to the terrain mesh. 

These artifacts are not captured by our PSNR metric, but may prove distracting to the 

viewer. The visual impact of these artifacts can be lessened by introducing new vertices 

using a geomorphing technique to smooth the geometric transition between mesh 

refinement levels [hoppe]. 

3.5 Approximate Terrain Representation Streaming Algorithms  

The motivating observation of this research is that above a certain quality level, 

human beings lack the ability to perceive changes in data quality. Any data that is sent 

that exceeds this threshold is wasted. We address this problem by using an approximate 

representation of the terrain geometry. The landscape (Figure 30) will be represented as a 

collection of 2-dimensional tiled bitmaps.  In this approach, height-fields will be 

represented as image data and compressed using a greyscale JPEG [jpeg].  Thus, the pixel 

luminosity in the image will relate linearly to the height at a given location on our map. 

This representation will efficiently encode terrain data because terrain data is fairly 
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smooth (modulo cliffs). The JPEG representation used in this chapter to represent height-

field data is an 8-bit grey-scale JPEG. Thus, each data point (height information) must be 

expressed as an 8-bit integer value. To allow this 8-bit tiled bitmap to describe arbitrary 

terrain, each tile can be given a scaling factor (difference between highest and lowest 

point) and an offset (value of the lowest point). 

The entire terrain is divided into smaller, square bitmaps and compressed using 

JPEG encoding in progressive mode to allow progressive refinement as data is streamed 

to the client. By representing the terrain as a collection of small tiles, instead of a single 

large tile, this allows the server to send terrain information in varying levels of detail (or 

even not at all if it is not visible to the user) for different areas of the landscape. 

JPEG encoding is based on a discrete cosine transformation (DCT) which first 

transforms two-dimensional data in the spatial domain to a frequency domain. The 

frequency coefficients are quantized, which is why JPEG encoding is very compressible 

and lossy. The quantizing factors are weighted to give a higher priority to high frequency 

information over lower frequency information. This is because the human eye perceives 

more detail in high-frequency information than smooth gradients. This observation is true 

of both photographic images (such as edges of objects) and terrain features (such as the 

shapes of mountains and cliffs). 

For progressive JPEG encoding, DCT coefficients are grouped into different 

refinement layers, with the first layers giving the low-frequency coefficients, and adding 

detail with refinement layers that describe the higher-frequency coefficients. In our 

implementation, each terrain tile is encoded into six progressive refinement layers (Figure 
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37). As more terrain data is retrieved, the detail of the representation of the terrain 

increases. 

Tiles that are outside the viewer’s frustum are not transmitted to the client while 

visible tiles are all transmitted using an equal share of the available bandwidth. By 

employing JPEG compression, this solution explicitly trades accuracy of height field data 

to benefit from a more compact representation. It is the goal of this work to find a 

compact representation of the data that degrades the rendered visualization in a minimal 

way, so that the difference is not perceivable to the human eye.  

 

         

Figure 37: Top: Progressive refinement of a  JPEG image. This image represents an actual land geometry 

tile in the Grand Canyon simulation, with lighter shades representing higher elevation. Bottom: A side view 

of the center cross section of the same map, undergoing progressive refinement.  
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3.5.1 Simple Approximate Terrain Representation Approach 

The first attempt at constructing an approximate algorithm for streaming terrains 

uses a JPEG representation of the terrain information, using a compression quality level 

of 95. From previous experiments (Section 3.3.1), this is the most compact JPEG 

representation of the data that maintains a minimum rendered display quality of 35dB 

(Figure 33), which is near the limits of human perception (Figure 34). 

In this implementation, the entire terrain is divided into 64
2
 square bitmaps (terrain 

tiles) and compressed using JPEG encoding in progressive mode to allow progressive 

terrain refinement as data is streamed to the client (Figure 37). An initial 64x64 point 

coarse representation is first sent to the viewing client before the streaming algorithm 

begins. This representation is identical to the data used for the non-streaming 64x64 

reference algorithm, which represents the worst-case performance of this approach.  

If the streaming algorithm is able to fully download the entirety of the terrain data, 

the performance becomes identical to the non-streaming jpeg-full95 reference algorithm 

introduced in Section 3.3.1. jpeg-full95 represents the best-case performance of this 

JPEG-based approach. 

In the simplest version of this algorithm, all visible terrain tiles are streamed with 

equal priority. Tiles that are outside the client’s viewing frustum are not downloaded to 

the client.  This approach is termed jpeg-nopri, and its simulation results are graphed in 

Figure 38. In an extension to the jpeg-nopri algorithm, visible tiles are prioritized with 

respect to their distance from the viewer and the size of the compressed tiles: 
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 (1) Flythrough 

 

(2) Flythrough, pausing at the midpoint to perform a 360˚ pan  

 

(3) Flythrough with a continuous 360˚ pan 

 

Figure 38: Simulation results for initial approximate representation streaming algorithms. Frame number 

is on the X axis. The rendering quality of the frame (PSNR in dB).  Higher values are better. 
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 ( 30 ) 

The proximity of the tile to the viewer is used to determine its visual weight, while the 

size of the compressed tile is used as a coarse metric to determine the tile’s geometric 

complexity. The bandwidth from the server is divided among visible tiles in proportion to 

the score yielded from Equation 30.  The results of this approach are graphed as jpeg in 

Figure 38. This prioritization is similar to the display-list streaming algorithm presented 

by Pouderoux & Marvie [pouderoux]. However, their simplification model focuses on 

using a multi-resolution strip mask display structure rather than highly-compressed 

progressively refined terrain data and lacks the fine-grain streaming properties possessed 

by the roam and roammax algorithms.  

The server overhead for implementing these streaming solutions is much smaller 

than the ROAM-based algorithms introduced in Section 3.4. This is because the 

calculations for determining priority streaming order are coarser-grained and only require 

a greatly simplified understanding of client state. The server only needs to keep track of 

the viewer’s location and orientation in addition to the number of bytes already streamed 

to each JPEG tile instead of the state of the client’s entire BTT. This drastically reduces 

the demand on the server’s resources, making it an algorithm that is suitable to deploy on 

production systems. 

Both jpeg and jpeg-nopri perform well and, as expected, are bounded by the best and 

worst case simulations (64x64 and jpeg-full95). Both approximate algorithms usually out-

perform the exact representation algorithms. Although jpeg-nopri can do better than jpeg 

1 
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when the view frustum mispredicts the future importance of JPEG tiles, the jpeg 

algorithm usually gives slightly better in the worst cases because it prioritizes information 

closer to the viewer. 

The most surprising result of these two simulations is that the performance of jpeg 

and jpeg-nopri behave very similarly. Further investigation revealed that the 

prioritization implementation was weak – the streaming policy attempted to enforce byte-

level streaming prioritization fairness on a per-frame timescale. This policy did not allow 

sufficient freedom for high-priority tiles to receive a significant larger share of available 

bandwidth, so the prioritization metric was rendered nearly useless. Despite this lack of 

intelligent streaming, approximate representation techniques always yield a better result 

than the roam simulation, and almost always better results than roammax except in 3 key 

areas: 

1) The beginning of flythrough #1 and #2. Due to the lack of a good prioritization 

mechanism, the JPEG-based algorithms are not able to quickly adapt to the 

newly initialized viewer and prioritize the transmission of terrain information 

closer to the viewer. ROAM’s vertex-level explicitness allows it to quickly send 

the most important pieces of terrain data to the client. The superiority of the data 

prioritization exhibited by the ROAM-based algorithms allowed them to deliver 

the most relevant data to the client, in a smaller amount of time. 

2) At frame 1450 of flythrough #2, the JPEG-based algorithm’s render quality drops 

to the level of roam. At this point, a distant mountain range that is not visible for 

the majority of the simulation rotates into view.  Immediately prior to this event, 

the terrain quality level was the same as jpeg-full95 – that is to say all visible 
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tiles were fully downloaded. Investigation into this event revealed that when all 

visible terrain tiles were completely downloaded, the JPEG-based streaming 

implementations would arbitrarily choose information to stream. A more 

appropriate use of bandwidth would have been to begin transmitting terrain 

information that is important (ie. large mountain ranges) that are not immediately 

visible to the viewer. The jpeg algorithm required almost 2 seconds to recover 

from this misprediction. The superior data prioritization and fine-level 

granularity in roam and roammax allow them to more quickly adapt to the 

viewer’s changing field of view. This prioritization advantage allows the 

roammax streaming algorithm to keep pace with the JPEG compressed stream in 

some cases, despite using a less efficient data encoding. 

3) During flythrough #3, the viewer’s camera is constantly being rotated. This is the 

most detrimental case to the jpeg streaming algorithm. Because of the weak 

prioritization metric it is unable to cope with the constantly changing view. The 

high JPEG compression rate exaggerates the result of stream prioritization. The 

results are better than roammax when the viewing areas of the terrain that have 

previously been viewed (due to compression efficiency) but worse than roam 

when the future tile importance is not correctly predicted. 

The most significant result is that despite the lack of an intelligent prioritized 

streaming technique, the JPEG based algorithms usually yield superior results to even the 

roammax approach. This implies that a high compression rate is more important to the 

visual quality of the simulation than intelligent prioritization of data. This phenomenon 

will become more pronounced in systems with large network latency, due to less accurate 
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prediction by the ROAM-based prioritization mechanism because the server will not be 

able to react as quickly to changes in the position and orientation of the viewer. An 

increased compression rate is effectively increasing the available bandwidth as more data 

can be sent over any given time interval. However, a less accurate JPEG approximation 

of the terrain also means that the simulation will not converge on as high of quality of 

rendering as an uncompressed data stream because of the loss in data/signal quality. The 

terrain will not be rendered as accurately as when all of the data has been transmitted 

without loss. 

During subjective examination of the rendered output, JPEG “ringing” artifacts are 

not easily observed – the quality increase in the streaming simulation tends to be fast 

enough that small inaccuracies are removed before they become too close and apparent to 

the viewer. However, blocking artifacts from neighboring terrain tiles being rendered at 

different detail levels can be distracting.  

3.5.2 Prioritize Streaming for Approximate Terrain Representation 

As an extension to the approximate streaming algorithms presented in Section 3.5.1, 

this section explores the use of a more involved understanding of the progressive JPEG 

image format. More specifically, progressive JPEG stores data in multiple refinement 

layers with increasing quality.  The base level refinement layer is equivalent to a JPEG 

encoded with a low quality setting, with each layer improving the image (terrain data 

representation) quality. A terrain tile can only be considered of uniform quality when an 

entire refinement layer has been processed. With this in mind, we can construct a 

streaming algorithm that calculates a tile’s priority based on a desired refinement level 
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instead of the byte size of the terrain tile. This also simplifies the complexity of our 

streaming protocol. Instead of streaming many terrain tiles simultaneously, we can 

construct a protocol that sequentially streams JPEG refinement layers. This will 

significantly reduce the amount of control information that the terrain streaming protocol 

must synchronize. 

We can also exploit our understanding of how the terrain data is used in order to 

construct a better streaming algorithm. In this study, the goal is to have more accurate 

terrain representation to promote a better visual experience from the perspective of a 3D 

viewer. Details near the viewer are important because closer objects are visibly larger on 

the viewer’s display. Terrain features that are far away from the viewer are 

disproportionately important if they contribute to the landscape’s skyline – if the 

silhouette of a distant mountain is absent or particularly soft, it can present a noticeable 

display inconsistency.  

The ROAM-based streaming algorithm accounts for these properties by considering 

the deviation between the rendered terrain and the true terrain from the viewer’s 

orientation and position, and then adding vertices as required. Unfortunately, a similar 

solution is not possible using a JPEG-based streaming algorithm because vertex-level 

granularity is not expressible. However, it is possible to apply a coarse approximation of 

this streaming prioritization. 

At each step in the rendering process, the position and orientation of the viewer is 

known to the terrain streaming server, in addition to the maximum height of the features 

in each terrain tile. A tile will contribute to the rendered skyline if the angle between the 

viewer, the tile, and the horizon is greater than the tiles in front of and behind it (Figure 
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39). Skylines are especially important to consider, because visually, disparity between the 

true skyline and the rendered skyline are the easiest to notice by a human viewer, and this 

inconsistency is well reflected in the PSNR evaluation metric. 

Silhouette edges have a disproportionately important contribution to the overall 

image accuracy because they guide our mental reconstruction of an object’s shape. Many 

level-of-detail (LOD) simplification algorithms recognize this property [luebke]. A 

prioritization algorithm that favors distant terrain features (terrain tiles) if they contribute 

to the silhouette edge of the skyline will result in better quality terrain renders. This can 

be approximated by calculating the angle between the viewer and the highest peak in 

each terrain tile.  

Whenever the viewer’s position changes, the angular distance of each tile with 

respect to the horizon is recalculated, with greater angles representing tiles that are higher 

on the client’s viewscreen. The list of visible tiles is sorted by angular distances to each 

terrain tile’s peak to generate a ranking of tiles that are likely to contribute to the 

landscape’s skyline. The terrain tile with the highest angular height is ranked first. 

      Scenario 1                                                     Scenario 2 

 

 

Figure 39:   Example: Two different streaming scenarios. In the first scenario, the more distant Hill B is 

more likely to contribute to the rendered horizon. In the second scenario, the nearby Hill C is more likely to 

contribute to the rendered horizon. 
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These two metrics are inverted and multiplied to form a tile importance score:  

                 
 

√                                              
 ( 31 ) 

The square root of the result is taken because number of tiles that must be considered 

grows roughly quadratically with the scale of the terrain we render (due to the two-

dimensional nature of a set of terrain tiles). A simple one-dimensional example is 

presented in Figure 40. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         

Figure 40:   Two scenarios demonstrating the results of the extended priority scoring in jpeg-ext. Note that 

in this example, we do not take the square root of the priority score because we are only presenting a one-

dimensional example. 
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 (1) Flythrough 

 

(2) Flythrough, pausing at the midpoint to perform a 360˚ pan  

 

(3) Flythrough with a continuous 360˚ pan 

 

Figure 41: Simulation results for approximate representation with more intelligent prioritized streaming 

algorithms. Frame number is on the X axis. The rendering quality of the frame (PSNR in dB).  Higher 

values are better. 
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To apply this understanding to the JPEG-based streaming algorithm, the tile 

importance score (Equation 31) is scaled between [0, n], where n is the maximum JPEG 

refinement level (in this particular implementation, n = 6). This normalized score 

represents the desired progressive JPEG refinement level. To choose a specific tile to 

stream, the server locates the visible terrain tile that has the greatest desired JPEG 

refinement level less the previously transmitted JPEG refinement level and transmits the 

next JPEG refinement layer. If all visible tiles have already been fully transferred, the 

same metric is applied to tiles outside the viewer’s frustum. 

An additional advantage of this approach is that it allows the terrain server to be 

almost completely stateless. If the client is initialized with knowledge of the maximum 

heights of every tile (4KB uncompressed with this data set), it can independently 

calculate stream prioritization and simply send the server requests for tile refinement 

layers – the server does not need to know anything about the state of the viewer. This 

solution is significantly more scalable, allowing a terrain streaming server to be simpler, 

and serve more concurrent clients. 

The result of the JPEG-based streaming solution with the extended prioritization 

scoring metric is graphed as jpeg-ext in Figure 41. The results of using a more 

sophisticated streaming metric are uniformly positive – it is almost as good as the better 

of jpeg and roammax in the worst case and significantly better than both in the best case. 

This effectively addresses each of the three of the weakness of jpeg discussed in Section 

3.5.1. The streaming prioritization used in jpeg-ext combines the quick-reacting nature 

and feature identification of the ROAM-based exact representation algorithms with the 

high compression coding efficiency of JPEG.  
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To further demonstrate the effectiveness of the algorithm, we introduce jpeg-ext-half 

(Figure 41). This simulation uses the same algorithm and data as jpeg-ext, but penalizes it 

by only allowing it use of half the bandwidth available to the other streaming simulations. 

Surprisingly, it is still able to keep pace with both jpeg and roammax in most cases. Even 

with just half the bandwidth, it avoids the worst-case behavior characteristics exhibited 

by jpeg, such as jpeg’s unreactiveness in flythrough #2 when the distant mountain range 

rotates into view (as discussed in Section 3.5.1). jpeg’s results are superior to jpeg-ext-

half’s performance only when its bandwidth advantage allows it to converge to a fully 

downloaded state first. 

3.5.3 Understanding the Characteristics of JPEG Representation 

As revealed in Section 3.5.1, the efficiency of JPEG encoding is of particular 

importance to this work as it has allowed the even approximate terrain streaming 

algorithms with weak data prioritization to provide a better remote visualization 

experience than exact terrain streaming algorithms in most cases. 

 Table 5 charts the average size of each refinement layer across all of JPEG encode 

tiles. On average, JPEG compressed tiles using a quality level of 95 are 594.053 bytes 

and JPEG compressed tiles using the maximum quality level 100 are 1081.669 bytes. The 

reported sizes discard headers and other information which is identical in every 

JPEG Refinement Level 1 2 3 4 5 6 

Avg. size: JPEG Quality 95  80.325 124.924 56.5547 129.415 16.313 216.521 

Std. Dev.: JPEG Quality 95  13.367 56.501 27.272 37.651 0.728 58.592 

Avg size: JPEG Quality 100  88.332 124.998 70.049 213.088 16.330 598.873 

Std. Dev: JPEG Quality 100  14.109 56.449 45.147 89.085 0.744 109.639 

Table 5: Sizes (in bytes) of JPEG compressed terrain tiles. 
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compressed tile (135 bytes). Any streaming algorithm need not burden itself with 

transmitting duplicate data. For reference, an uncompressed tile is 4096 bytes. 

Although JPEG compression at quality level 100 is not as compact as JPEG 

compression at quality level 95, more than half of its data size footprint is represented 

only in refinement level 6, the highest level of progressive refinement. The average JPEG 

compressed tile at quality level 100 is only 512.797 bytes at refinement level 5, which is 

noticeably smaller than the average fully refined JPEG compressed tile at quality level 95 

(594.053 bytes). 

Table 6 charts the visual quality of JPEG compression at the different refinement 

layers, using a JPEG quality level of 100. At JPEG refinement layer 5, the quality of the 

representation is 53.3564 dB, which is nearly indistinguishable from the fully refined 

JPEG compressed map using a quality level of 95 (53.7115dB). These observations 

indicate that a progressive JPEG using a quality level of 100 is as efficient at encoding 

data as a progressive JPEG using a quality level of 95, and can deliver a superior final 

representation of the data.  

 

Compression Size PSNR Quality 

64x64 Representation 4KB 23.7015 dB 

SL/Opensim 3533 KB 57.9752 dB 

Progressive JPEG level 1 193 KB 40.3551 dB 

Progressive JPEG level 2 318 KB 47.9664 dB 

Progressive JPEG level 3 388 KB 49.984 dB 

Progressive JPEG level 4 601 KB 53.258 dB 

Progressive JPEG level 5 617 KB 53.3564 dB 

Progressive JPEG level 6 1216 KB 59.708 dB 

Table 6: Compressed representation of terrain, as well as the PSNR comparison with the original, raw data. 

JPEG-compressed representations use a quality level of 100. 
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(1) Flythrough 

 

(2) Flythrough, pausing at the midpoint to perform a 360˚ pan  

 

(3) Flythrough with a continuous 360˚ pan 

 

Figure 42: Simulation results for high-quality approximate representation streaming algorithms with 

intelligent streaming. Frame number is on the X axis. The rendering quality of the frame (PSNR in dB).  

Higher values are better. 
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With this new insight, we re-examine the previous decision to use JPEG compression 

at quality level 95, instead of its maximum quality level 100 encoding. The jpeg-ext 

algorithm presented in Section 3.5.2 (JPEG encoded terrain tile streaming with extended 

priority scoring) is modified to use a JPEG compressed tiles with a quality level of 100, 

termed jpeg-ext100. The results are graphed in Figure 42. A simulation of this algorithm 

using half as much bandwidth was also run, and the results are graphed as jpeg-ext100-

half.  

For the most part, the jpeg-ext100 and jpeg-ext (and their half-bandwidth 

counterparts jpeg-ext100-half and jpeg-ext-half) perform very similarly. The most 

significant performance deviation occurs when jpeg-ext (and jpeg-ext-half) has 

downloaded all relevant data, and their rendering quality is bound by the maximum detail 

in the final JPEG refinement layer. At this point, jpeg-ext100 (and jpeg-ext100-half) can 

continue streaming more terrain detail information, providing a superior quality terrain 

rendering visualization. 

3.6 Conclusion 

To address the need for online virtual worlds to display landscapes on remote 

viewing clients, we have proposed a lossy streaming architecture suitable for the 

streaming of 3-dimensional terrain data. In the first stage of the jpeg-ext100 algorithm, 

we reduce the height-field data representing the virtual terrain to a bitmap image, using 

JPEG to compress it to approximately one quarter of the original size. The data is 

compressed in a lossy manner that is indistinguishable by a human eye from the 
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uncompressed version. By exploiting the structure of JPEG compression, our knowledge 

of the shape of the terrain, and the viewer’s position and orientation, we are able to 

design a nearly stateless streaming algorithm that prioritizes the portions of the terrain 

data that are more relevant to the viewer. After initially connecting to the virtual world 

and beginning streaming, the quality of the remote rendering rapidly improves and 

becomes nearly indistinguishable from an uncompressed, pre-downloaded terrain after 

approximately 20 seconds in our experimental scenarios. When compared to roammax, a 

reference exact-representation algorithm with impractical computing requirements and 

vertex-level expressivity, jpeg-ext100 yields a 5-15 dB PSNR improvement in the quality 

of the rendering for the majority of the experimental scenarios after the initial 20 second 

start-up. During the initialization phase, roammax and jpeg-ext100 yield similar results in 

terms of rendered image quality. Because roammax has vertex-level granularity, it is 

effective in adding detail to where it is needed most. However, as the simulation 

progresses, the more compact data representation used by jpeg-ext100 begins to dominate 

in terms of rendered level of detail. 

The experimental results here demonstrate the importance of achieving a high data 

compression ratio in order to provide high-quality streaming terrain. This further 

underscores the importance of adopting lossy encoding techniques, which can yield much 

higher compression rates than the non-lossy approaches. By exploiting the structure of 

the compressed data, jpeg-ext100 intelligently prioritizes data delivery while requiring 

very little state information to be stored at the server, greatly simplifying server design 

and server computing load, allowing jpeg-ext100 to be an excellent candidate for 

deployment in virtual-world streaming systems. 
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3.7 Future Work 

The techniques proposed here are suitable for deployment in its current state as a 

streaming only solution. However, because client processing power is not unlimited, it 

must be used in conjunction with a client-side LOD simplification algorithm for real-time 

display. There may be a way to design a client-side LOD simplification algorithm that 

applies understanding of the level of representational accuracy expressed in the 

underlying compressed streaming data in order to design an efficient client-side rendering 

algorithm. 

The JPEG-based algorithms presented here only allows terrain to be presented in as 

many levels of detail as is practical with JPEG compression (6-8 levels in practise) and 

assumes that the highest level of detail supported in the terrain is uniform. For some 

styles of virtual world, it may be more appropriate to use multi-level hierarchy of terrain 

tiles, or even using an irregular mesh instead of a regular grid of height-posts to represent 

the terrain. 

At present, the material and lighting information is not considered. It may be 

possible to design a way to send this information that combines this information with the 

terrain geometry for a more efficient, unified streaming algorithm. Combining terrain 

streaming with general 3D model streaming is also an open problem. Objects in the 

environment (such as buildings) may occlude portions of the terrain, making it less 

important to stream those parts of the terrain.   
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Chapter 4 Distributed Simulation Architecture for Virtual Worlds 
 

Virtual reality systems [active][croquet][sl][opensim] have risen in popularity with 

readily available high-speed networking and affordable consumer computer graphics 

processing hardware. One significant problem of designing 3D virtual worlds such as a 

metaverse (a dynamic and persistent virtual online shared space where users interact 

through digital avatars) is developing a scalable architecture that can manage millions of 

simultaneous users in an interactive 3D environment with dynamic content. This chapter 

presents XPU (Extremely Partitioned Universe), a hierarchical client-server architecture 

for developing highly scalable Metaverses. This design addresses the problem of 

dynamically partitioning the world to manage network and computing resources. Unlike 

massively multiplayer online games (MMOGs) which strive to simplify their universe by 

optimizing their implementation for a specific game environment, metaverses are 

characterized by a generalized approach to the problem of 3D worlds. These designs seek 

to promote unconstrained user-generated content for services such as social networking, 

collaboration, scientific experimentation, e-commerce, marketing, gaming, education and 

training. The unconstrained nature of metaverses requires a different style of architecture 

to manage computing and networking resources than regular online games which are 

fixed in content complexity and distribution. Because the world is dynamic and 

constantly changing, especially as users move in the virtual space, the infrastructure 

cannot pre-allocate computing resources to service different regions of the world as is the 

style in all currently deployed virtual worlds [chen3]. The infrastructure must be 

constantly adaptive, allocating computing resources when and where they are needed in 
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the simulation. In practice, a large portion of the virtual space is unused for the majority 

of the time, while others have disproportionately high amount user traffic, which makes 

intelligently adaptive simulation management essential [varvello]. 

XPU is an architecture designed with the goal of managing 3D virtual space and 

content in a client-server situation. The following are the design requirements for this 

architecture: 

 The system must follow a client-server architecture. In this way, the service 

provider can guarantee security, availability and adequate resource 

provisioning.  

 The available computing power is large, but no single computer can support 

the entire computing load. The state of the world is so vast and dynamic no 

single entity can even have sufficient global knowledge of the world manage 

computing resources to address the load balancing problem. 

 The virtual environment is a free-form universe and cannot make strong 

assumptions about the distribution of content in the metaverse, which will be 

driven by dynamic user activity. The population is large and unpredictable, 

and the architecture must accommodate flash crowds as well as vast unused 

or unpopulated spaces. 

It is the goal of XPU to be an architecture for metaverse-like entities and to be a 

foundation for all types of MMO virtual simulations including online gaming and 3D 

social networks. 
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4.1 Related Work 

There are many examples of massively multiplayer virtual spaces that each employ 

distinct solutions to the problem of managing vast virtual spaces that need to service a 

high number of simultaneous clients. 

In MMOGs, sharding is a popular approach to broadly partition the user base into 

disjoint copies of the world. In this model, replication is easy because users belonging to 

one shard cannot interact with users in other shards [uo][wow].  Load balancing is 

accomplished by restricting the number of simultaneous users in each replicated shard. In 

these environments, only a minimal amount of functionality is delegated to the server to 

simplify their operation, allowing them to accommodate a large number of simultaneous 

users. For example, generalized physics and dynamic content are usually omitted. 

Croquet [croquet] is a decentralized approach to the problem of virtual spaces 

relying on a peer-to-peer synchronization protocol to distribute the contents of the virtual 

space. A single croquet instance can become congested with many simultaneous users 

since there is no mechanism to subdivide existing space.   

Active Worlds [active] is another Metaverse-like virtual world that allows dynamic 

content creation, including a simplified scripting interface. The Active World universe 

hosts hundreds of worlds which can be traversed by users, where each world is hosted on 

a single server. This architecture has no mechanism to allow a world to grow beyond a 

single server’s ability to manage the world’s resources. 

Second Life [sl][kumar][rosedale] and its open-source counterpart OpenSimulator 

[opensim] are metaverse-like worlds that allow users to explore and create dynamic 

content in a three-dimensional space. This space is partitioned into square 256x256m 
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regions, each managed by a separate region simulator (sim) process. Each sim is tied to a 

specific region of land and cannot be repartitioned to react to a changing workload. This 

is the primary reason that scaling is such a difficult problem in this architecture. Larger 

spaces are created by placing sims adjacent to one another. Shards or instancing is not 

supported. 

Several dynamic load balancing algorithms for virtual worlds based on spatial 

subdivision have been proposed. Since the optimal solution for load balancing is NP-

complete, it is necessary to devise a more practical approach [liao]. Different topologies 

of fixed grid spatial subdivision strategies have been explored, such as triangular, square, 

hexagonal and brickworks [presetya]. These systems are not as scalable as spatial 

subdivision approaches using hierarchical grids. Either dynamic resource allocation is not 

present, or it involves moving server processes around so that unloaded servers can time-

share a single CPU. The frameworks that do dynamic server allocation first divide the 

world into regular-shaped cells (squares and hexagons) [chen3] [ahmed].  These cells are 

moved between servers to perform dynamic load balancing. These approaches are 

inherently not scale-free as a single overloaded cell cannot be repeatedly subdivided until 

it only contains a managable workload. It is also difficult to add new servers to 

overloaded areas, because the algorithms are designed to shed load to neighbors, which 

themselves may be overloaded. 

Heirarchical subdivision using binary region splitting has been attempted using 

Opensim and Sirikata as virtual world test platforms [liu][cheslack]. The analysis for the 

work presented by Liu et al. focus on workload completion times for measuring the 

effectiveness of the approach. The performance analysis for Sirikata focused on packet 
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rate and server discovery latency. The approach in the Sirikata platform uses the 

heirarchical structure to perform visibility estimation  using solid angle queries to 

simplify the streaming load and for message routing. The heirarchical structure is also 

used to perform view aggregation and model simplification of larger subregions for 

graphical streaming. 

ALVIC approaches Metaverse design by using quad-tree subdivision for partitioning 

logic servers and employing many proxy servers to hide the network topology from 

clients [quax].  This work focuses on streaming services to manage clients and does not 

consider the computing load required to manage the virtual world simulation itself. 

Another spatial subdivision approach based on Voronoi partitions has been explored 

[hu]. This approach reacts to increasing load by introducing server nodes near high 

activity areas and relying on a Voronoi partition to allocation virtual space to a node. The 

number of users assigned to a single region cannot be easily controlled using this 

technique because the load balancing mechanism can only seek to reduce the amount of 

server load by assigning more servers to an area, without directly considering the 

distribution of users.  In this system, the shape of subdivided regions is very irregular, so 

the number of regions meeting at a single point is unbounded and can lead to more 

complex synchronization issues [liu2]. The region shapes formed by Voronoi partitioning 

can degenerate into long, thin wedge shapes, and the borders between regions move 

drastically as two nearby Voronoi control points pass by each other. An advantage to 

Voronoi partitioning is that it is scale-free and is able to adapt to any granularity of 

simulation. This analysis presented in this work focuses on servicing client traffic rather 

than the operational cost of running the simulation. 
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The Project Darkstar (Sun Gamer Server Technology framework) approach to 

accommodating massive world state avoids spatial subdivision in favor of storing object 

and world state in a massive database [darkstar]. Actions on objects are performed 

through the database. While this approach allows additional processing power to be 

added easily, it discards any sense of spatial locality that makes the processing of virtual 

worlds more efficient. 

4.2 Approach to Distributed Systems for Virtual World 

To manage the allocation of dynamic objects in virtual space, XPU borrows 

fundamental tree data structures from computer graphics. Modern ray-tracers rely on 

acceleration structures to manage scene and world data to minimize computationally 

expensive collision and lighting calculations. One classic approach to this problem is to 

divide space into hierarchical bounding volumes (HBV) [rubin] (Figure 43). In this 

         

Figure 43:   An example of a two-dimensional hierarchical bounding volume. Triangles represent objects, 

circles represent bounding volumes. The virtual space is represented on the left, and the associated 

heirarchy is represented on the right. 
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approach, the 3D space is divided into hierarchies and arranged in a tree structure. Child 

nodes represent space encompassed by the parent, with leaves being atomic renderable 

objects such as triangles and spheres. kd-trees are a more restrictive type of spatial 

partitioning, only allowing partitioning planes to subdivide space perpendicular to the 

canonical 3-space axis, resulting in a binary space partitioning (BSP) tree. This data 

structure is successfully used in modern ray-tracing algorithms [reshetov]. 

The core design motivation of XPU is the assumption that no single computer has 

enough resources to manage the entire Metaverse simulation. XPU provides a convenient 

load splitting and management mechanism to distribute computation over a set of servers. 

At the core of the XPU architecture is the XPU tree. The XPU tree is very similar to an 

HBV tree. The most significant difference between the XPU and the HBV tree is that 

leaves in an XPU tree represent virtual regions instead of objects. Each leaf node in the 

tree is a region managed by a separate server process. Just as in all HBVs, parent nodes 

must completely encompass the space occupied by child nodes. The root node in the 

XPU tree represents the entire virtual space, with world simulation being handled at the 

leaf nodes of the tree, processed by region simulators (sims).  

For this discussion, a sim is a single server computer. To distribute the workload of 

managing the XPU world, each sim can divide its managed space in two and delegate 

responsibility of managing a sub-region of its space to a new sim, allocated from a pool 

of servers. Just as in a kd-tree, the space managed by the child nodes is expressed by a 

partition plane, aligned perpendicularly to either the x, y or z axis. The left child is 

responsible for managing all objects on one side of the first partition plane while the right 

child is responsible for managing all objects to the opposite side of the partition plane.  
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Figure 44: Recursive spatial subdivision of a virtual world (upper right) resulting in a heirarchical 

topology (lower left). Users and dynamic objects in the world are represented with circles. 
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Figure 44 illustrates the recursive construction of an XPU graph in a 2 dimensional 

Cartesian space. The simulation begins with all users and dynamic objects in the world 

being simulated by a single server. The world repeatedly subdivides until every sim 

manages only the objects it has sufficient computing resources to accommodate.   

4.2.1 The kd-tree Structure for Virtual World Partitioning 

The kd-tree is a useful structure for spatial subdivision for several reasons. First, 

because of its hierarchical nature, it naturally adapts to varied population size and 

density. This divide-and-conquer approach repeatedly subdivides space until an 

appropriate object density is selected. By selecting the locations of the partitions between 

cells, the number of objects assigned to each region and server can be controlled with 

high precision. 

Each region is partitioned using axis-aligned boundaries, so a rectangular region 

shape is always formed. Rectangular regions are useful because they are convex shapes, 

which have more desirable properties when used for spatial subdivision in virtual world 

contexts. These properties will be explored in more depth in Section 4.6. This can be 

contrasted with other types of spatial partitioning which can give wedge shapes, non-

convex shapes, and even complex shapes. 

kd-tree spatial partitioning limits the number of regions that meet at a point to a 

maximum of four. It is undesirable to have many regions meeting at a single point in 

virtual world spatial partitioning because a moving object crossing over this point may 

have to undergo multiple boundary crossing / server migration events to reach its 

destination. 
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It is also possible to take advantage of the hierarchical structure of the kd-tree to use 

as infrastructure for message routing and graphical LOD simplification [cheslack]. 

4.3 XPU Load Balancing 

The most significant motivation to XPU design is the need to divide and distribute 

processing load of a metaverse over many servers.  A property of XPU volumes inherited 

from its HBV-derived structure is that all objects will be fully enclosed by a bounding 

sub-volume. This is an important property because it allows the processing of objects to 

be assigned to a hierarchy of logical regions. A leaf node in the XPU tree represents a 

region simulator (a single server computer) that is responsible for the management and 

processing of objects in its enclosing volume. 

The two most significant operations in managing XPU systems are node splitting and 

joining. When a region simulator is overwhelmed by an implementation-specific 

definition of load, it can choose to split its workload between two child sims (Figure 44). 

For this operation, the XPU system will assign a new simulator (from a pool of idle 

servers) to the task, and delegate a sub-region of the Metaverse to the newly allocated sim 

to manage. The converse operation is simpler – when two sibling leaf simulators have a 

sufficiently small combined workload, one sim synchronizes its state with its neighbor 

which takes over the management of their combined virtual world volumes. The now 

vacated child sim can rejoin the pool of idle simulators. In this manner, the XPU tree is 

constantly balancing the simulation load of the virtual world over a cluster of servers. 
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The goal of the XPU management system is to maximize the performance of the 

interactive virtual world, given a workload and realistic computing constraints. A sim can 

only accommodate a finite number of users and dynamic objects before it cannot 

guarantee real-time performance. When two users in different simulators interact across a 

region boundary, the two sims must communicate over the network, which incurs a 

network cost. When a dynamic object traverses from a region managed by one sim to 

another region, the management and processing of the object is transferred to a new sim.  

Its information must be synchronized and marshalled across the network, which again, 

incurs a cost. 

The challenge of this work is to develop an algorithm that will efficiently allocate 

computing resources to manage the simulation in a way that minimizes the computing 

and networking cost of supporting the virtual world. An unconstrained virtual world that 

supports an unbounded number of users can easily grow to a prohibitively large scale  so 

that no single computer or entity can handle the task of managing computing resources 

for the entire world. It is for this reason that a distributed algorithm must be developed, so 

that this problem can be approached without the requiring knowledge of the entire world 

state. 

4.4 XPU Simulation Workload 

To evaluate the performance of the XPU system, a simulation workload representing 

activity in a virtual world is required to compare the efficacy of different approaches to 

virtual world management. For the purposes of this evaluation, the world is represented 
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by a square region, with users and dynamic objects moving around in this space. In this 

simulation, users and dynamic objects are modelled identically, and are interchangeable 

with respect to overall virtual world modelling and performance evaluation. 

Currently no completely freeform virtual world exists, so it is not possible to use a 

real-world trace of user activity in a deployed virtual world. All existing traces of user 

behavior in virtual worlds are constrained by the architectural limitations of the system 

which XPU seeks to remove. Because of these reasons, a synthetic workload must be 

constructed to evaluate the performance of the XPU system. To model an expansive 

virtual world, we begin by assuming that the world can be contained by a large square 

region and we model the movement patterns of objects over 100000 time steps. 

The synthetic virtual world simulation workload is motivated by the following 

observations: 

 Users move around in the world. 

 Users and content tend to cluster together, rather than be evenly distributed 

throughout the world. Groups of users attract new users and have “flocking” 

tendencies. 

 The session times for users follow a heavy-tailed distribution [chang]. Peak 

load varies drastically from minimum load. 

The first two characteristics are reminiscent of an n-body simulation (a simulation of 

celestial bodies moving in space, accelerating due to gravitational interaction). It is for 

this reason that an n-body simulation was chosen as the basis of the synthetic evaluation 

workload. n-body simulations are characterized by moving objects with natural clustering 

behavior, as groups of objects naturally come together under the influence of gravity. To 
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characterize user session times, new dynamic objects are introduced into the simulation 

following a Pareto distribution, with time-limited life, also following a Pareto 

distribution. A Pareto distribution is chosen for its characteristic long tail distribution 

which matches patterns observed in user session times [chang]. The generator for this 

distribution is given by:  

    (   )  ⌊ (
 

 (   )
)

 
 ⁄

⌋ ( 32 ) 

where U(0,1) gives a random number following a uniform distribution in the interval 

[0,1). The objects themselves are initialized with a random mass, also following a Pareto 

distribution. This is to promote natural clustering behavior so that some objects will 

disproportionately attract other objects. The initial velocity of dynamic objects is given 

by a Gaussian distribution, using the Box-Muller method 

      (   )     √     ( )   ( 33 ) 

where      
    

 ,       (   )   ,       (   )    and    . 

The parameters for this simulation are chosen to model the population of a 

moderately sized virtual world. For the purposes of the analysis presented in this chapter, 

the population of the virtual world we are simulating has an average of roughly 17,000 

users. More detailed information on the world population is given in Appendix A. 

4.4.1 Simulation Workload Variations 

Because different styles of virtual worlds will exhibit different overall user behavior, 

several synthetic workloads have been constructed to model varying movement patterns 

of users in virtual worlds. To create points of interest and promote object clustering, we 

introduce the idea of fixed attractors. These are objects with a large mass that do not 
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move under the influence of simulated gravity and have an unlimited lifetime. These 

fixed attractors exist only to influence the motion of dynamic objects in the simulation 

using gravitational attraction. Dynamic objects are preferentially initialized near fixed 

attractors, using a Gaussian distribution to promote clustering behavior near these points 

of interest. The following are the names and descriptions of these workloads: 

 No Fixed Attractor: This workload does not contain any fixed attractors. 

Objects are initially placed in a wide Gaussian distribution centered about the 

center of the world. This workload exhibits a relatively small amount of 

clustering behavior, with objects modestly preferring to gather near the center 

of the world, to larger dynamic objects, and to other clusters of objects.  

 Single Attractor: This workload contains a single fixed attractor placed at the 

center of the world. Dynamic objects are initially placed in a tight Gaussian 

distribution centered about the center of the world. This workload is 

characterized by dynamic objects strongly preferring to cluster near the 

center of the world. 

 Single Attractor (Broad Initial Location): This workload contains a single 

fixed attractor placed at the center of the world. Dynamic objects are initially 

placed in a wide Gaussian distribution centered about the center of the world. 

This workload is characterized by dynamic objects moderately preferring to 

cluster near the center of the world.  

 Row-lined Attractors: In this simulation workload, several uniformly sized 

fixed attractors are placed regularly in a row along the center of the virtual 

world. Dynamic objects in this workload tend to move along a line bisecting 
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the world. This world represents a world where content is designed along a 

single line or street, similar to the Metaverse described in Neal Stephenson’s 

seminal science fiction novel on virtual worlds, “Snow Crash”.  

 2x2 Attractors: This simulation contains four uniformly sized fixed attractors, 

placed at the center of the four quadrants of the virtual world. This is 

analogous to a world where the centers of activity are uniformly distributed 

throughout the world. 

 Circular Motion Attractor: This simulation contains a single fixed attractor 

that gradually traverses the world in a circular path. This workload is 

analogous to a virtual world where users preferentially flock to a moving 

center of interest. 

 Random Attractors: This simulation contains nine fixed attractors of varying 

sizes, distributed in an initially random pattern around the world. This 

workload is analogous to virtual worlds where content (and hence locations 

of user congregation) is placed in an uncoordinated fashion, resulting in an 

irregularly distributed traffic pattern. 

More detailed statistics, graphs and diagrams describing these seven workloads are 

located in Appendix A. These synthetic workloads will serve as a basis for evaluating 

virtual world performance in different scenarios. 
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4.5 Performance Metrics 

To evaluate the performance of the XPU system on the various workloads described 

in Section 4.4, we introduce four metrics to describe the overall performance of this 

system under those workloads. These metrics quantify the amount of computing 

resources that are required to manage the simulation, the level of service provided by the 

simulators, and the amount of network communication and inter-server synchronization 

required to support the simulation. For the experimental results in this chapter, simulation 

results are only recorded after the first 10000 time cycles have elapsed. This is to allow 

the simulation achieve a kind of “steady state” and disregard initialization cost. In a 

persistent virtual world, the continuous operational efficiency of the system is much more 

important than initialization cost of an entire world, which happens relatively 

infrequently. 

4.5.1 Number of Servers Metric 

The total number of sims allocated to manage the world simulation is designated as 

λ. This represents the number of servers (computing resources) that are allocated by XPU 

to support the virtual world simulation. A lower number of servers are preferred so that 

the virtual world can be more cost-effectively managed. 

4.5.2 Server Crossing Metric 

The total number of server crossings, δ, is the measure of resources used in each time 

step to transfer the management and processing of objects from one sim to another. This 

represents the cost of synchronizing the state of an object to another server, which 

consumes networking resources. A server crossing can occur due to the movement of an 
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object across the border between two sims, or when sims split or merge, necessitating the 

transfer of objects between servers. An ideal result is δ = 0, with higher numbers 

indicating an increased number of objects that must be migrated between sims, incurring 

higher communication and synchronization costs. In practice, the overhead of performing 

an object migration can be significant [liu] and care should be taken to minimize the 

number of server crossings. 

4.5.3 Spatial Locality Score 

The spatial locality score is a measure of the virtual world management system’s 

ability to allocate co-located objects together in the same sim. This is important because 

objects that are co-located are more likely to interact, and the interaction cost of two 

objects is lower if they are managed by the same server. If two objects in different sims 

interact, this will incur a communication cost between two servers.  The spatial locality 

score, ω, can be thought of an estimate of the amount of inter-sim object-to-object 

interaction in the virtual world. This is estimated by modelling a probability of interaction 

between two objects as 

   
 

  |     |
  ( 34 ) 

where oi and oj are the locations of object i and j. If two objects are in exactly the same 

location, the probability of interaction is estimated to be 1. The probability that two 

objects will interact in a given time step decreases cubically with the distance between 

the two objects. This is consistent with the observation that two users or dynamic objects 

are less likely to interact the farther they are from each other. Intuitively, as the distance, 



www.manaraa.com

116 

 

 

 

d, from an object increases, the volume enclosed by a sphere of radius d also increases 

cubically. 

The overall spatial locality score, ω, is obtained by summing over the probability 

that all two objects in different simulators will interact. 

   ∑
 

  |     |
 

(     )  

 ( 35 ) 

where O = { (oi, oj) | oi and oj not in the same sim }. An ideal score is ω = 0, with higher 

scores representing the need to perform a higher amount of inter-sim interactions. 

Note that this metric is not scale-free. If the same distribution of objects is rescaled 

from a small size (e.g. a dozen people in a conference room) to a large size (e.g. a dozen 

people in a forest) this metric will yield completely different estimates of interaction 

probability. 

4.5.4 Overload Score  

Overload score reflects the amount of insufficiently allocated computing power to 

support the simulation. We assume that each server has a fixed amount of computing 

power and can support the processing of a maximum of m dynamic objects. For the 

purposes of this evaluation, m=32. This number was chosen in accordance with the 

number of simultaneous users that a single server can process in currently deployed real-

world systems [sl]. If a sim is currently managing n dynamic objects, and n > m, then it is 

said to be overloaded.   (   )   is a measure of the degree of overload of the sim. It 

is the number of objects in the simulator experiencing the overload condition, multiplied 

by the degree of overload of the simulator. Summing this result over all active simulators 

yields the overall overload score of the simulation.  
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where    is the number of objects in simulator s. In the experiments presented in this 

chapter, the virtual world management system is constructed so that no object 

experiences overload, so θ = 0. This is to make the results of the experiments tractable, so 

that the results of different XPU sim allocation algorithms can be directly matched to 

server crossings, spatial locality score and required number of servers. 

4.6 XPU Sim Allocation Algorithms  

The main challenge of this work is developing a partitioning algorithm that 

intelligently subdivides the world using the hierarchical bounding structure provided by 

XPU. The overall goal of a subdivision algorithm is threefold: It should dynamically 

subdivide the world in a way that provides enough computing power to satisfy the 

processing demands of managing dynamic objects in the world while requiring as few 

servers as possible. Where possible, it should construct regions so that nearby objects are 

allocated to the same sim to minimize inter-sim interaction cost. Objects should be 

migrated between sims as little as possible to reduce the overhead of synchronizing state 

over the network. 

In a real deployable system, this algorithm is difficult to construct because the world 

size is unbounded, so no single server has the storage or processing power to know the 

location of all objects in the world. This section will begin by exploring several global-

knowledge algorithms (where the state of the entire world is known to a single server), 
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before using a distributed algorithm that does not rely on global knowledge to partition 

the world using the XPU tree. 

4.6.1 kd_split XPU Algorithm 

This first approach is a global-knowledge algorithm referred to as kd_split and is 

based on a k-d tree. The algorithm is very simple – it recursively partitions the world so 

that the number of objects on each side of the partition is even. The orientation of the 

partition is chosen to be orthogonal to the longest dimension of a rectangular region, 

bisecting it, so that region shapes will be predisposed to constructing square-like regions 

rather than strips of long rectangular regions. 

Square regions are preferred to rectangular regions because they allow nearby 

objects to be grouped closer together. The efficacy of this approach is reflected in the 

spatial locality score. More squarely shaped regions will also allow the region to have a 

shorter border relative to their area, which reduces the likelihood that a moving object 

will traverse a region border, reducing the occurrences of server crossings due to object 

movement across a region boundary. 

To ensure that a sim is never overloaded, a sim is always subdivided when the 

number of objects it contains exceeds maximum number of dynamic objects, m that can 

be fully accommodated by the sim. 

When two neighboring sims, s1 and s2 are underutilized, the objects from s2 should 

be transferred to s1 which will take over the responsibility of managing the region 

formerly managed by s2.  s2 can then be returned to the pool of unused servers. This 

merge operation reduces the number of active sims, λ, reducing the computing resources 
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committed to supporting the virtual world simulation. The merging of two sims also 

improves the efficiency of inter-object interaction, because objects formerly managed by 

s2 can now interact directly with objects managed by s1 without incurring the overhead of 

communicating between servers. This efficiency will be reflected in a lowered spatial 

locality score, ω. Finally, reducing the number of sims will reduce the number of 

dynamic objects that need to be moved from one sim to another due to object movement, 

which incurs a synchronization cost as the object’s state must be transferred from one sim 

to the next. Fewer server crossing events, δ, will occur because there will be fewer sims 

managing a given area for moving objects to cross into. 

 While merging underutilized sims is beneficial for the overall efficiency of the 

virtual world, this merge operation also incurs a cost as all dynamic objects managed by 

s2 will need to be transferred to s1. Transferring an object from one sim to another due to 

a merge operation is the same as transferring an object from one sim to another due to the 

object moving over the boundary between two sims, so the cost of a merge operation will 

be reflected in an increase in the number of server crossings, δ. Care must be taken to 

balance the cost of merge operations versus the benefit of merging sims. Through 

Workload λ (avg.) Δ (avg.) ω (avg) 

No Fixed Attractor 1020.7 530.4 511.0 

Single Attractor (Broad Initial Location) 978.8 784.1 1422.0 

Single Attractor 1024.0 1519.7 8628.9 

Row-lined Attractors 1013.6 1182.6 4585.1 

2x2 Attractors 1030.9 1278.9 3278.8 

Circular Motion Attractor 1024.0 2214.9 5502.5 

Random Attractors 1009.1 1462.1 4509.0 

Table 7: kd_split performance. The number of servers (λ), server crossings (δ) and spatial locality score (ω) 

reported here are averages over the 100000 timestep workload. 
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experimentation later discussed in Section 4.6.6, a reasonable choice of merge condition 

is when two neighboring sims contain less than ¾ m=24 dynamic objects. 

The results of using the kd_split  algorithm to manage the different evaluation 

workloads are reported in Table 7. These performance results will serve as a baseline for 

comparison with other XPU partitioning algorithms. To understand the limitations of 

kd_split, we begin by recognizing that it always constructs a balanced tree where there 

are an equal number of dynamic objects managed by both sides of each sub-tree. This has 

the effect of ensuring that the XPU tree always has the structure of a complete tree, so 

there will always be 2
n
 active sims for some natural number, n. 2

n
 active sims will always 

be able to support 2
n
·m dynamic objects. This is insufficient granularity to ensure 

efficient allocation of resources, and the average total usage of assigned computing 

resources is just 52-55% for all workloads. However, of all the algorithms analyzed in 

this chapter, kd_split  did have the best mininimum number of active sims during all 

workloads, because it is very efficient at allocating sims whenever the total number of 

dynamic objects is just under 2
n
·m. 

kd_split also yields unimpressive results with respect to the spatial locality score. 

This is for two reasons: First, because of the inefficient allocation of computing resources 

as mentioned above, dynamic objects are spread over an unnecessarily high number of 

servers. Second, this algorithm has a tendency to develop long rectangular region shapes 

as the simulation progresses, which are poor for exploiting spatial locality in the 

distribution of objects. Long rectangular regions will group objects that are near each 

other on one axis, but not necessarily near one another in space. The structure of XPU 

tree when using kd_split is very stable (because sims are largely underutilized) so every 
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sim is very long-lived, very rarely allocating new sims to manage the virtual world. Since 

the only mechanism that prefers the construction of more square-like regions in the 

algorithm operates only when new sims are allocated, over time region shapes have a 

tendency to devolve into more thin and long rectangular regions. 

The most serious shortcoming of the kd_split  is the high number of server crossings 

that occur when using this approach. This is in part due to the long thin rectangular 

regions that tend to develop. Long rectangular regions have larger borders relative to their 

interior area and are biased to cause dynamic objects to cross over sim boundaries as they 

travel about the virtual world. However, the most significant contributor to the high 

number of server crossings occurs due to how rigidly kd_split forces the XPU tree to be 

completely balanced. To accomplish this, the algorithm frequently moves objects 

between sims, which incurs a server crossing cost. This approach generates very few 

server crossings from sim split and merge operations, because sims managed by kd_split 

rarely split or merge. 

4.6.2 kd_split_mincross XPU Algorithm 

The most significant downfall of the kd_split algorithm is the high number of server 

crossings it produces from its rigid enforcement of tree balancing. The general approach 

of kd_split_mincross is to partition the world to minimize the number of server crossings 

at each time step. 

At the beginning of every simulation cycle this algorithm analyzes the XPU tree in a 

depth-first traversal, determining where to move the partition that minimizes the number 

of dynamic objects that will be moved between the two sub-trees. This calculation 
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requires global knowledge of the location of all objects in the virtual world simulation 

which makes it impractical for real-world deployment. In cases where there is more than 

one choice of minimal sim-crossing partitions, the algorithm chooses the one that will 

most equally balance the number of objects managed by the two sub-trees of the XPU 

node. In this way, the shape of the tree is biased to being more like kd_split when 

possible. To prevent the formation of a degenerate or highly unbalanced tree, we only 

allow partitions where one sub-tree manages at most twice the number of dynamic 

objects as its neighbor. As with all the experiments reported in this chapter, a sim is split 

when it manages more than m=32 dynamic objects (to avoid overloading the server), and 

merged when neighboring sims contain less than ¾ m=24 objects. 

The performance results of kd_split_mincross are reported in Table 8. This algorithm 

demonstrates a dramatic improvement over kd_split in terms of the number of server 

crossings, reducing it by 21-72%. The most significant improvement occurs in the No 

Fixed Attractor workload because the objects in this workload are more evenly 

distributed throughout the world relative to the other workloads. This distribution allows 

the sim allocation algorithm more latitude to choose partitions that reduce the number of 

Workload λ (avg.) δ (avg.) ω (avg.) 

No Fixed Attractor 1012.3 146.0 485.9 

Single Attractor (Broad Initial Location) 986.2 395.0 1370.1 

Single Attractor 974.5 1100.9 8264.3 

Row-lined Attractors 966.5 424.1 4312.1 

2x2 Attractors 995.9 845.4 3127.3 

Circular Motion Attractor 939.0 1755.9 5283.7 

Random Attractors 962.0 983.2 4298.5 

Table 8: kd_split_mincross performance. The number of servers (λ), server crossings (δ) and spatial 

locality score (ω) reported here are averages over the 100000 timestep workload. 
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server crossings. More densely clustered workloads such as Single Attractor and Circular 

Motion Attractor benefit less from the improved partition choice in kd_split_mincross 

because these workloads have more dynamic objects moving around in dense clusters 

(which will necessarily be more heavily partitioned) causing server crossings to occur. 

The number of allocated servers is marginally improved over kd_split due to the less 

rigid enforcement of a fully balanced tree. The reduced number of sims is also beneficial 

to a lowered spatial locality score, because the objects are managed by a smaller number 

of sims. Also, since sims are more often re-allocated as the population of dynamic objects 

change, this has the effect of producing region shapes that more closely approximate a 

square because regions are always split on the long edge. This is beneficial in reducing 

the number of server crossing incurred because of object motion, due to a shorter border 

length relative to enclosed area, and reducing the spatial locality score because nearby 

objects are more frequently partitioned in a single sim. 

4.6.3 centersplit_mincross XPU Algorithm 

One notable observation of the behavior of the previously presented XPU algorithms 

is that having square-shaped regions is beneficial for reducing the number of server 

crossings and the spatial locality score. This motivates the construction of a new global 

knowledge algorithm, centersplit_mincross. This algorithm behaves exactly as 

kd_split_mincross does, but instead of preferring partitions that better balance the tree, it 

prefers partitions that more evenly divide the space managed by two neighboring sub-

trees. This bias will allow regions to remain more squarely shaped as the simulation 

progresses. 
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A summary of the results of centersplit_mincross running on the various evaluation 

workloads are presented in Table 9. Overall, the impact on the number of server crossings 

relative to kd_split_mincross was minimal. The most significant improvement was 

exhibited on the No Fixed Attractor workload because this workload has a more uniform 

object distribution than the other workloads, which allows for the formation of larger, 

squarer regions. Dynamic objects in this workload are also slower moving and so are not 

crossing between sims as frequently. Fast moving objects will incur the cost of many 

server crossing operations, regardless of the sim shape. A noticeable improvement was 

exhibited in the spatial locality score for all workloads. As predicted, the squarer region 

shapes allow more nearby objects to be allocated to the same region, decreasing the 

number of objects that must interact across a sim boundary. centersplit_mincross was 

also more effective at reducing the number of sims required to support the simulation. 

Just as with kd_split, the bias in kd_split_mincross towards creating a fully balanced tree 

prevented some sims from reaching the merge threshold, leaving more servers 

underutilized. By removing this bias in centersplit_mincross, simulators were allocated in 

a way that allowed them to more fully utilize their computational capacity to manage 

Workload λ (avg.) δ (avg.) ω (avg.) 

No Fixed Attractor 930.3 137.4 427.1 

Single Attractor (Broad Initial Location) 896.2 384.7 1314.1 

Single Attractor 901.4 1107.5 8144.5 

Row-lined Attractors 954.2 444.4 4123.3 

2x2 Attractors 927.6 845.6 3045.8 

Circular Motion Attractor 917.1 1777.5 5208.4 

Random Attractors 913.2 971.4 4192.5 

Table 9: centersplit_mincross performance. The number of servers (λ), server crossings (δ) and spatial 

locality score (ω) reported here are averages over the 100000 timestep workload. 
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dynamic objects. Having a well-balanced tree is not very useful for efficiently allocating 

server resources because we prefer that the leaves of the tree (sims) to be nearly at 

capacity rather than having a balanced tree with leaves (sims) being evenly loaded and 

under capacity. 

A more careful examination of the simulation shows that the partition selection 

algorithm was occasionally being constrained by the balancing requirement of 

centersplit_mincross where one sub-tree can only contain at most double the number of 

dynamic objects as its neighbor. To examine the effects of this requirement, a 

modification to this algorithm was explored, termed centersplit_unbalanced_mincross. 

This algorithm chooses partitions exactly as centersplit_mincross does but without the 

balancing requirement. Each sub-tree is only required to contain at least one object.  

The performance summary of this modified algorithm is reported in Table 10.  

centersplit_unbalanced_mincross does not perform as well as centersplit_mincross. By 

completely removing the balancing requirement many sims went highly underutilized. 

This increased the number of sims required to support the virtual world, which in turn, 

caused the spatial locality scores and the number of server crossings to increase. 

Workload λ (avg.) δ (avg.) ω (avg.) 

No Fixed Attractor 932.9 138.5 428.8 

Single Attractor (Broad Initial Location) 905.1 397.0 1342 

Single Attractor 1006.9 1220.1 8665.8 

Row-lined Attractors 1066.0 422.6 4093.8 

2x2 Attractors 965.5 893.7 3143.7 

Circular Motion Attractor 1086.9 1960.0 5771.5 

Random Attractors 961.8 1038.4 4340 

Table 10: centersplit_unbalanced_mincross performance. The number of servers (λ), server crossings (δ) 

and spatial locality score (ω) reported here are averages over the 100000 timestep workload. 
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From this analysis, we conclude that centersplit_mincross represents a global-

knowledge algorithm that does well in reducing the server crossing cost of managing a 

metaverse in an XPU-style architecture. 

4.6.4 clustersplit and clustersplit_mincross XPU Algorithms 

The key to improving the spatial locality of an XPU partition algorithm is to group 

nearby objects together in the same region since nearby objects are much more likely to 

communicate than distant objects. The section introduces clustersplit, an XPU 

partitioning algorithm that uses a simplified k-means cluster analysis to allocate clusters 

of objects to a single region. This is a global knowledge algorithm that is impractical to 

deploy on a real-world system but serves as a reference algorithm to evaluate the efficacy 

of other approaches. 

As with all XPU algorithms, clustersplit recursively partitions the world, splitting 

each sim along the shortest axis of the enclosed region at each level of the XPU tree, 

splitting sims when they reach the computational capacity of a server to support them. 

clustersplit seeks to minimize the squared error of the locations of all the objects in each 

sub-region with respect to the centroid of objects in the sub-region. Suppose the set of all 

objects in a region, O, is to be split into two sub-regions containing the sets of objects, OL 

and OR where        .  Define the centroid of a region to be the geometric average 

of all object locations in a set: 

         ( )  
 

| |
∑         ( )

   

 ( 37 ) 
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The clustersplit partitioning algorithm will choose the partition that minimizes the mean 

squared error of all of the locations of all objects in each sub-region with respect to its 

centroid: 

 

      
 

| |
( ∑ |        ( )          (  )|
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) 

( 38 ) 

The results of using this partitioning algorithm on the evaluation workloads are 

reported in Table 11. With respect to the previously explored algorithms, clustersplit 

performs approximately on par with the best algorithms in terms of the number of sims, 

and bests all previous algorithms in terms of spatial locality score. This indicates that the 

previously explored algorithms leave room for improvement in this area. Unfortunately, 

clustersplit performs abysmally in terms of server crossings, incurring a performance 

degradation of roughly 70% to 800% compared to centersplit_mincross. This is because 

clustersplit ruthlessly moves objects across sims to try and preserve groups of objects in 

Workload λ (avg.) δ (avg.) ω (avg.) 

No Fixed Attractor 931.6 1185.9 333.3 

Single Attractor (Broad Initial Location) 899.4 1778.3 1139.1 

Single Attractor 890.6 2390.6 7470.6 

Row-lined Attractors 913.9 1699.2 3368.7 

2x2 Attractors 916.8 2347.2 2644.8 

Circular Motion Attractor 907.5 2969.6 4631.6 

Random Attractors 898.7 2786.3 3749.9 

Table 11: cluster_split performance. The number of servers (λ), server crossings (δ) and spatial locality 

score (ω) reported here are averages over the 100000 timestep workload. 
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their own simulator. It is for this reason that clustersplit is an unsuitable algorithm for 

XPU partitioning. 

To blend the benefits of a partition algorithm that is capable of identifying clusters of 

objects while avoiding the penalty of an unacceptable amount of server crossings, a new 

algorithm, clustersplit_mincross, is explored. This algorithm is constructed in a similar 

fashion to centersplit_mincross. As before, kd_split_mincross is used as an algorithmic 

framework, but instead of preferring partitions that better balance the tree, it prefers 

partitions that are closer to the ideal cluster split. This bias will augment the 

kd_split_mincross algorithm so that region partitioning will better preserve clusters in a 

single sim. 

The results of running clustersplit_mincross on the evaluation workloads are 

reported in Table 12. With respect to the number of sims required for simulation, this 

partitioning algorithm performs as well, with numbers on par with centersplit_mincross. 

Since region shapes are not as square as centersplit_mincross, clustersplit_mincross 

incurs more server crossings because region borders are longer relative to their enclosed 

area, which increases the chances that a moving dynamic object will cross a region 

Workload λ (avg.) δ (avg.) ω (avg.) 

No Fixed Attractor 939.6 147.5 418.2 

Single Attractor (Broad Initial Location) 907.9 397.6 1302 

Single Attractor 900.4 1116 8124.2 

Row-lined Attractors 939 459.5 3951.8 

2x2 Attractors 926.2 858.9 3012.1 

Circular Motion Attractor 919.2 1792 5189.9 

Random Attractors 907 990.9 4174.9 

Table 12: clustersplit_mincross performance. The number of servers (λ), server crossings (δ) and spatial 

locality score (ω) reported here are averages over the 100000 timestep workload. 
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boundary in its regular course of travel. With respect to the spatial locality score, 

clustersplit_mincross performs better than centersplit_mincross, because it better 

preserves clustered objects in a single region, which reduces the need for nearby dynamic 

objects to interact across region boundaries. clustersplit_mincross represents an exact, 

global-knowledge algorithm that does well to minimize the spatial locality score in a 

metaverse managed with an XPU style framework. 

4.6.5 bintree XPU Algorithm 

We now turn our attention to the development of a distributed algorithm that does 

not require global knowledge. The goal of this algorithm is to use a simplified 

understanding of the world so that the partitioning algorithm is computable in a real 

implementation and does not rely on global knowledge. As discovered in the analysis of 

the global knowledge algorithms (Section 4.6.1-4.6.4), it is preferable to have square-

shaped regions. The reason for this preference is two-fold: Firstly, a square (compared to 

a rectangle) has a smaller border, relative to its enclosed volume. This will lower the 

number of server crossings incurred due to the motion of dynamic objects, because there 

will be fewer borders to cross. Secondly, in a square region, the maximum distance 

between two objects in a region will be shorter than that of two objects in a rectangular 

shaped region. This will be beneficial in lowering the spatial locality score. To 

accomplish this, we introduce the bintree data structure [shaffer]. A bintree is similar to a 

quadtree, but instead of recursively partitioning a square region into four congruent 

square sub-regions, it partitions regions into two congruent rectangular sub-regions. This 

structure is employed by the bintree partitioning algorithm. 
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 The key simplification used by bintree that allows it to operate in a real-world 

scenario is that at each partitioning stage the algorithm only requires a greatly simplified 

understanding of the world state. Instead of requiring knowledge of the locations of all 

objects in a given region before being able to choose a partition, it only needs to 

determine if the region should be split or not. This is much easier to compute in a real 

system than previously discussed global-knowledge algorithms because it does not 

consider the location of objects when constructing region partitions – it simply divides 

each region in half, approximating the ideal region division. At each stage of spatial 

 
 

         

Figure 45:   The square-shaped virtual world, using different fixed attractor configurations. Circles 

represent fixed attractors. The dotted lines represent the world after being partitioned by the first few levels 

of bintree region subdivision.  
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Single Attractor 
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subdivision, the bintree algorithm need only know how many dynamic objects are 

contained in a region before choosing to split or merge regions. As before, bintree will 

split sims containing more than m=32 dynamic objects and merge neighboring sims 

containing less than ¾ m=24. 

The construction of several of the evaluation workloads represent near worst-case 

scenarios for bintree (Figure 45). In the Single Attractor and Single Attractor (Broad 

Initial Location) workloads, there is a large fixed attractor at the very center of the virtual 

space. This is especially disadvantageous for bintree because the region borders are fixed 

and unmoving, so the first two levels of region subdivision will partition the space so that 

the single large attractor is placed at the corner of four regions. This will insure that 

dynamic objects moving about the center of gravity will incur a high number of server 

crossings. In the Row-lined Attractors workload, the attractors are placed in a row. After 

the first two levels of region subdivision, all of the fixed attractors will be placed on a 

region border. Moving dynamic objects near the fixed attractors will therefore have a 

higher predisposition of crossing a sim border as they move. In the 2x2 Attractors 

workload, after just four levels of region subdivision, all of the fixed attractors will be 

placed at the corner of four regions. These four fixed attractor configurations 

disadvantage bintree, relative to the previously discussed global-knowledge algorithms 

because they do not have fixed region borders and so will not be exposed to these 

pathological worst-case scenarios.  
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The results of running the bintree algorithm on the evaluation workloads are reported 

in Table 13. Compared to the best of the global-knowledge algorithms, 

clustersplit_mincross and centersplit_mincross, bintree performs well, even on 

workloads that represent worst-case scenarios for bintree. In terms of the number of 

servers required to support the simulation, bintree does roughly as well as the better of 

centersplit_mincross and clustersplit_mincross. One weaknesses of bintree is that it can 

only divide regions in half spatially, making it inefficient in dealing with situations where 

the density of objects increases by more than a factor of two for neighboring sub-regions. 

If a large number of objects only occupy a very small portion of the virtual space, bintree 

must repeatedly subdivide the space before it can begin creating very small sub-region to 

distribute the object management load onto multiple sims. This process will create 

several under-utilized sims. This coarseness of region subdivision is demonstrated in the 

Row-lined Attractors workload because the vast majority of dynamic objects are 

concentrated about the center axis of the virtual space, and bintree must create several 

under-utilized regions before it can begin subdividing regions where objects are heavily 

concentrated (Figure 46). 

Workload λ (avg.) δ (avg.) ω (avg.) 

No Fixed Attractor 929.9 133.1 391 

Single Attractor (Broad Initial Location) 895.5 371.5 1242 

Single Attractor 900.7 1058.9 7815.6 

Row-lined Attractors 989.2 399.2 3906.1 

2x2 Attractors 927.6 809.4 2869.3 

Circular Motion Attractor 909.6 1715.7 4891.5 

Random Attractors 908.8 932.2 3969.1 

Table 13: bintree performance. The number of servers (λ), server crossings (δ) and spatial locality score (ω) 

reported here are averages over the 100000 timestep workload. 
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bintree performs well when compared to centersplit_mincross (the best global 

knowledge algorithm in terms of server crossings) and clustersplit_mincross (the best 

global knowledge algorithm in terms of spatial locality), showing between 3-12% 

improvements in all cases.  This is due to bintree’s rigid adherence to square-like regions, 

which are an excellent heuristic to reducing server crossings and spatial locality score.  

4.6.6 Choosing the XPU Merge Constant 

All the algorithms discussed in Section 4.6 depend on a fixed merge constant to 

determine when the load shared between two neighboring simulators is low enough to 

merit merging the workload managed by two neighboring simulators into a single 

simulator. If the merge constant is set too high, the partitioning algorithm will seek to 

merge simulators too frequently. This merge operation incurs a significant operational 

cost because all the objects in one simulator will need to be transferred to the other, and 

        

Figure 46:   The square-shaped virtual world, using the Row-lined Attractors configuration. The smaller 

circles and dots represent dynamic objects, and the larger circles represent fixed attractors. The dotted lines 

represent the world after being partitioned with bintree. Note the larger, underutilized regions. 
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so should be minimized [liu]. This cost is reflected in the server crossing metric, as each 

object must be moved between simulators during the merge operation. If the merge 

constant is set too low, the partitioning algorithm will merge simulators too infrequently, 

resulting in a higher than necessary number of servers being allocated to manage the 

simulation. A higher number of servers imply that the dynamic objects of the simulation 

will be distributed across more simulators, resulting in a worse spatial locality score. A 

higher number of servers will also result in more server crossing operations because 

dynamic objects move and a higher number of active simulators mean that there are more 

regions for these objects to cross into. 

This merge constant is determined experimentally, by running the full simulation 

with the split constant fixed at m=32 (the maximum number of dynamic objects each 

simulator can manage without becoming overloaded) and varying the merge constant 

between 2 to 32. These experiments are reported in Appendix B. A merge constant of ¾ 

m was found to be a reasonable choice for minimizing sim crossings and excessive 

merge/split operations. 

4.7 Results of Fixed Square Grid Spatial Subdivision 

To better understand the effectiveness of dynamic spatial partitioning, we have 

measured the performance of the various workloads when using a fixed square grid 

pattern that is typical of Second Life and OpenSim (Figure 47) [sl][opensim].  Unlike the 

dynamic partitioning algorithms explored in Section 4.6, this style of fixed spatial 

partitioning must be set at the beginning of the experiment and cannot be changed as the 
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simulation progresses. The administrator of this sort of system must have a way of 

anticipating the kind of traffic that their virtual world will receive in order to properly 

dimension their virtual world. To limit the number of dynamic objects assigned to a 

server, as the algorithms presented in Section 4.6 do, the grid size would have to be set to 

match the region of highest density during the entire simulation workload. 

In these experiments, we consider square grids with between 900 servers (similar to 

the average number of servers used by bintree and the other dynamic spatial subdivision 

algorithms) and 35344 servers (more servers than objects). When the numbers of servers 

used is small, the number of server crossings and the spatial locality score is better than 

what is observed when using the dynamic partitioning approaches by up to a factor of 

two. However, this advantage comes at a cost – the system becomes highly overloaded. 

At times, some objects are allocated to servers that are managing more than ten times its 

maximum load. The dynamic partitioning techniques in in Section 4.6 never assign more 

objects to a server than it can accommodate and so have no overload. 

        

Figure 47:   The square-shaped virtual world, using a regular square grid spatial subdivision strategy. The 

dotted lines represent the borders between regions. 
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The only way to reduce the amount of overload in this kind of system is to add more 

servers by dividing the world into smaller regions. While this does reduce the amount of 

overload, it does not eliminate it in any of the tested workloads and scenarios. As the 

number of servers assigned to manage the virtual world increases, the spatial locality 

score and the number of server crossings also increases (worsens). Fixed grids using 

more than 60
2
 servers show no advantage to fixed grid partitioning in terms of the 

reported metrics, while still exhibiting a high amount of overload. It was not possible to 

completely eliminate overload in the test scenarios by using more servers in a finer grid 

pattern. The full set of experimental results is presented in Appendix C. 

4.8 Conclusion 

In this chapter we have proposed and described XPU, a hierarchical space 

partitioning architecture used to distribute a simulation workload in infinitely scaling 

chunks so that simulation workload requirements can be met. XPU borrows acceleration 

structures from computer graphics and develops new uses and algorithms to leverage 

these structures to support a dynamically scaling virtual world load balancing system 

using distributed computing. These algorithms consider the inherent cost in networking 

and communication operations when distributing computing over several servers. It has 

been shown that the bintree spatial subdivision algorithm has good performance 

characteristics relative to global-knowledge algorithms and fixed grid partitioning 

techniques over several types of metaverse workloads. Using the simple heuristic of 

favoring square-shaped regions, and subdividing the world so that the activity within 
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each region can be mapped to a single server, the perimeter of the region relative to its 

area is minimized, and the region shape allows nearby objects to be mapped to a single 

server. This reduces the number of server crossings that are required to manage an object 

travelling along a path, and decreases the amount of communication that must occur 

between servers for inter-object interactions. Because this heuristic is so simple and does 

not require global knowledge, bintree is a suitable algorithm for deployment in a 

dynamically load-balanced distributed virtual world. 

As the density of object clusters increases, it becomes more difficult to choose good 

partitions and all spatial partitioning schemes will suffer. To improve performance for 

these cases, it is essential to increasing the number of objects that can be processed by a 

server, which would effectively increase region size. This can be accomplished by using 

more powerful servers, optimizing the server [bowman] or separating the services that the 

server provides [quax]. 

4.9 Future Work 

One of the limitations in XPU is that it can only support rectangular regions. This 

can be a limiting factor in cases where it is desirable to have irregular region shapes to 

better subdivide the interaction. One potential means of addressing this is to allow 

regions to subdivide beyond what is necessary, allowing a single server to manage 

multiple regions. This would have the effect of segregating virtual world activity into 

irregularly shaped regions composed of rectangular sub-regions. This would also have the 

benefit of allowing the structure of the world to efficiently adapt to virtual world content 
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distributions where the density of the content varies more than exponentially. Another 

way to approach this problem is to use a structure based on skip quadtrees or compressed 

quadtrees [eppstein]. 

The XPU virtual space is currently limited by its initial size. The virtual space 

represents a square or rectangle and there is no mechanism to allow the virtual space to 

grow or shrink. An extension to XPU that allows the virtual world to represent an 

infinitely extending and unconstrained space will provide additional freedom to the 

system. 

The evaluation metrics used to evaluate XPU can also be expanded to consider a 

more detailed simulation workload. For example, the estimation of spatial locality 

considers all objects as having equal weight. In many realistic scenarios, dynamic objects 

are not all equally important. For example, a speaker at a conference carries more 

influence than an audience member, and an aircraft carrier is visually more imposing than 

a rowboat. 

Currently, XPU only uses proximity between dynamic objects as an estimator of the 

likelihood of inter-object interaction. In a more advanced simulation, it might be possible 

to use a more sophisticated estimator, such as mutual visibility. For example, two people 

in close proximity to one another are less likely to interact if they are separated by a wall. 

The analysis in this chapter regarding server splitting and merging does not consider 

that the migration of many simultaneous objects can add a processing delay, as many 

objects will need to be synchronized over the network between two servers. This delay 

can be significant in real-world scenarios. One way to mitigate this cost is to gradually 

split/merge neighboring regions, amortizing the server crossing cost over time. 
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The algorithms explored in this chapter are purely reactive and do not make any 

attempt to predict future load levels and object distribution patterns. By considering the 

velocity of objects, it would be possible to predict future object distribution in the world, 

and so it may be possible to take advantage of this prediction to perform better spatial 

subdivision. It may also be possible to employ user-directed hints or machine learning 

techniques to predict object distribution patterns. For example, if a user schedules a 

recurring event with a significant number of participants every day at noon, it would be 

possible to use this information to predict the amount of computing resources required to 

manage a specific area in the virtual world. The spatial partitioning system could choose 

to pre-allocate servers to manage that region in anticipation of the predicted traffic. 
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Chapter 5 Conclusion and Future Work 
 

This dissertation concludes with a summary of the contributions made in this thesis, 

the lessons learned, as well as discussion of the direction for future work. 

5.1 Summary 

The work presented in this dissertation explores algorithm and systems software 

design at different layers of an interactive networked 3D virtual application, ranging from 

the base networking layer, to client/server graphics streaming protocols, to the design of a 

distributed virtual-world back-end server architecture. These all address different aspects 

of designing a truly unconstrained immersive virtual world. 

By analyzing the semantics of the Internet and considering the networking 

requirements of a virtual world, we have demonstrated how to build simpler and quicker 

routers and network devices to better support the packet processing demands of a real-

time networked virtual environment. In reconsidering the necessity of supporting exact, 

predictable semantics over a best-effort network, we have determined that allowing 

packet classifiers to misclassify packets with a tiny probability gives us the freedom to 

design a more efficient packet classification cache. By extending the best-effort 

semantics inherent in IP networking upwards to the transport layer, we have proposed a 

novel design for packet classification caches  that probabilistically manages packet 

processing decisions, using much simpler hardware, without modifying the overall 

semantics of networking design. This approach of using an approximate cache can also 

be extended to be used purely as an acceleration structure to augment the performance of 
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an exact cache. With this solution, it is possible to optimize a system so that common 

cases are handled more quickly without the penalty of probabilistic errors. 

By considering the constraints of the networking infrastructure and the desire to 

support a high-quality remote rendering, we have constructed a novel streaming 

algorithm and data representation to better support remote visualization for virtual terrain 

rendering. The proposed algorithm adapts to the remote viewer’s perspective and the 

features of the terrain so that a high-quality representation of the virtual terrain stored on 

a server can be accurately rendered on a remote client. We have demonstrated how to 

design more efficient, practical ways of streaming terrain data by discarding detail while 

preserving the overall visual experience. Because the human eye is tolerant of minor 

deviation in perceptual information, the difference in the true, exact representation of the 

terrain, and the rendered solution is imperceptible to a human observer. Graphical 

information is reorganized and prioritized so that the most prominent visual information 

is transmitted before adding fine detail so that a coarse approximation of the scene can be 

rendered before rapidly converging on a finely detailed rendering. 

XPU, a design for a systems architecture for metaverse-style virtual environments is 

presented. XPU allows for the distributed management of an expansive virtual world 

simulator by using a hierarchical spatial partitioning technique. This design allows the 

virtual world to perform load balancing in reaction to the changing and dynamic nature of 

the virtual world simulation. This design considers the computational and communication 

costs of managing the distributed simulation in order to deliver an efficient, scalable 

system. The result is a virtual world architecture that is both practical to deploy and has 
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demonstrably good performance characteristics, relative to impractical global-knowledge 

solutions. 

5.2 Future Directions 

We have addressed more specific future work in the individual chapters.  Here, we 

will focus on the larger issues and challenges that will arise as a result of the demand for 

richer, more interactive virtual world experiences. 

One area of active research and development is the user interface to interact with 

virtual worlds. The oncoming availability of affordable, low-latency virtual reality head-

mounted displays promises to spur a new profusion in virtual reality applications 

[oculus]. These types of displays have been combined before with devices that allow 

users to express natural motion, such as omnidirectional treadmills, to provide a more 

involved experience [darken]. Capturing non-verbal communication (such as facial 

expressions and body language) is an on-going topic of research that will allow users to 

project a more complete and expressive avatar in virtual environments [yang2]. Non-

traditional user interfaces, such as devices using gesture recognition, haptic feedback and 

olfactory stimuli also present possibilities for interacting with virtual environments in a 

deeper way [kortum].   

The majority of the tools used to develop virtual world content (such as 3D 

modelling packages, text-based document editors, bitmap manipulation software, and 

avatar customizers) are run offline and later imported into the virtual world. While easier 

to construct, this content development workflow disrupts the immersive nature of virtual 
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worlds and presents obstacles to seamless remote collaboration. There would be benefits 

to designing a unified framework to allow the integration of external content 

development tools with virtual environments so that consistency and the sense of virtual 

world immersion is maintained [croquet]. 

A more specific extension to this thesis would be to consider how to build a system 

that is capable of large-scale distributed graphical simplification of a dynamic world. For 

a remote client to be able to view and interact with a vast virtual world that is unlimited 

in detail and complexity, a practical way of summarizing the world using level-of-detail 

reduction algorithms to present a simplified visual representation of the world is 

necessary. The work and techniques presented in this dissertation can form the 

framework for a solution to this problem; it is possible to leverage a hierarchical spatial 

subdivision method (such as XPU) to generate hierarchical level-of-detail simplification 

for remote clients [cheslack]. It may also be possible to use this structure in conjunction 

with image-based rendering techniques to present a compact and efficient representation 

of a large virtual world [chaudhuri].  

There is also the question on how to allow communication between independently 

administrated virtual worlds. Some existing virtual world architectures such as 

OpenSimulator and Active Worlds allow users to travel between different systems, but 

each virtual world exists in its own disjoint virtual space. As virtual worlds evolve and 

become ubiquitous, it is desirable to develop paradigms where different virtual worlds 

can choose to express different relationships with each other. For example, two virtual 

world systems could choose to be arranged as neighbors in a combined virtual space, or 

one virtual world may be fully embedded inside another. These relationships can be even 
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more complicated to express if virtual worlds can represent a non-uniform or non-

Cartesian space. 
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Appendix A Virtual World Simulation Workload Summary 

 

 

Figure A.1: Number of active objects during No Fixed Attractor workload.  

Statistic Min Max Avg Harmonic 

Mean 

Standard 

Deviation 

# of objects 13684 30669 17706.1 568933.2 1651.2 

# of new objects 5 12630 14.8 1284393533.3 84.8 

# of deleted objects 1 184 14.7 758495173.3 5.2 

Max spatial locality 

score 

1248.6  8607.5  2043.4  5177924.0  625.7 

 Table A.1: Key statistical summary for No Fixed Attractor workload. 

 

Figure A.2: Locations of fixed attractors in the square-shaped virtual world in the No Fixed Attractor 

workload. 
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Figure A.3: Number of active objects during simulation run. Minimum: 13255, Maximum: 28344, 

Average: 17203, Harmonic Mean: 585885, Standard Deviation: 1598 

Statistic Min Max Avg Harmonic 

Mean 

Standard 

Deviation 

# of objects 13255  28344  17203.3  585885.6  1599.0 

# of new objects 5  9948  14.4  1283322107.5  70.0 

# of deleted objects 1  177  14.4  773096108.9  4.8 

Max spatial locality 

score 

2051.4  12356.1  3750.9  2793868.8  922.6 

 Table A.2:  Key statistical summary for Single Attractor (Broad Initial Location) workload. 

 

Figure A.4: Locations of fixed attractors in the square-shaped virtual world in the Single Attractor (Broad 

Initial Location) workload. 
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Figure A.5: Number of active objects during simulation run. Minimum: 14454, Maximum: 21865, 

Average: 16932, Harmonic Mean: 592479, Standard Deviation: 980 

Statistic Min Max Avg Harmonic 

Mean 

Standard 

Deviation 

# of objects 14454  21865  16932.5  592479.2  980.2 

# of new objects   5 5998  14.1  1284046118.0  48.2 

# of deleted objects 1  166  14.1  784552211.7  4.2 

Max spatial locality 

score 

7246.0  49111.5  15828.6  678272.3  4567.0 

 Table A.3:  Key statistical summary for Single Attractor workload. 

 

Figure A.6:  Locations of fixed attractors in the square-shaped virtual world in the Single Attractor 

workload. 
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Figure A.7: Number of active objects during simulation run.  Minimum: 13147, Maximum: 26430, 

Average: 17284, Harmonic Mean: 581962, Standard Deviation: 1351 

Statistic Min Max Avg Harmonic 

Mean 

Standard 

Deviation 

# of objects 13147  26430  17284.7  581962.8  1351.9 

# of new objects 5  8411  14.3  1281927759.4  59.7 

# of deleted objects 1 162  14.3  773443329.8  4.5 

Max spatial locality 

score 

5815.4  43491.6  10599.6  1000589.6  3241.6 

 Table A.4:  Key statistical summary for Row-lined Attractors workload. 

 

Figure A.8: Locations of fixed attractors in the virtual world in the Row-lined Attractor workload. 
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Figure A.9: Number of active objects during simulation run. Minimum: 14171, Maximum: 35115, 

Average: 17400, Harmonic Mean: 579473, Standard Deviation: 1826 

Statistic Min Max Avg Harmonic 

Mean 

Standard 

Deviation 

# of objects 14171  35115  17400.7  579473.8  1826.4 

# of new objects 5  17508  14.5  1286045852.8  86.5 

# of deleted objects 1  164  14.4  772014163.1  5.2 

Max spatial locality 

score 

4833.1  59387.7  7780.3  1355710.4  3080.2 

 Table A.5: Key statistical summary for 2x2 Attractors workload. 

  

Figure A.10 Locations of fixed attractors in the square-shaped virtual world in the 2x2 Attractor workload. 
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Figure A.11: Number of active objects during simulation run. Minimum: 13427, Maximum: 31314, 

Average: 17314, Harmonic Mean: 582347, Standard Deviation: 1695 

Statistic Min Max Avg Harmonic 

Mean 

Standard 

Deviation 

# of objects 13427  31314  17314.0  582347.5  1695.7 

# of new objects 5  14035  14.4  1284976804.7  78.6 

# of deleted objects 1  171  14.4  775668291.7  5.0 

Max spatial locality 

score 

6840.5  59880.9  11854.4  882160.0  3472.3 

 Table A.6: Key statistical summary for Circular Motion Attractor workload. 

  

Figure A.12:  Locations of fixed attractors in the square-shaped virtual world in the Circular Motion 

Attractor workload. This single fixed attractor moves in a circular path around the world. 
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Figure A.13: Number of active objects during simulation run.  Minimum: 13170, Maximum: 26649, 

Average: 17073, Harmonic Mean: 589293, Standard Deviation: 1378 

Statistic Min Max Avg Harmonic 

Mean 

Standard 

Deviation 

# of objects 13170  26649  17073.5  589293.5  1378.2 

# of new objects 5  9650  14.3  1285591932.3  60.7 

# of deleted objects 2  172  14.2  778846177.5  4.5 

Max spatial locality 

score 

5614.7  50314.6  9745.9  1076399.8  2805.6 

 Table A.7: Key statistical summary for Random Attractors workload 

  

Figure A.14: Location of objects in the  Random Attractors workload. 
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Appendix B Extended Performance Results for Virtual World 

Simulation 

In every graph in this section, each data-line represents a partitioning algorithm with 

the split constant chosen to be 32 (the maximum number of objects a simulator can 

manage without becoming overloaded) while varying the merge constant. The choice of 

merge constant ranges between 2 to 32. The performance metrics reported here are 

described in detail in Section 4.5. 

 

 

 

 
Figure B.1: No fixed attractor workload. Average number of server crossings per time interval vs. the 

average number of servers required to manage the simulation. Better performance is towards the bottom 

left on this graph. 
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Figure B.2:   No fixed attractor workload. Average number of server crossings per time interval vs. the 

average number of servers required to manage the simulation. Better performance is towards the bottom 

left on this graph. 

 

 

 

Figure B.3: No fixed attractor workload. Average number of server crossings per time interval versus 

average special locality score. Better performance is towards the bottom left on this graph. 
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Figure B.4: No fixed attractor workload. Average number of server crossings per time interval versus 

average special locality score. Better performance is towards the bottom left on this graph. 

 

Figure B.5: No fixed attractor workload. Average  number of servers required to manage the simulation 

versus average special locality score. Better performance is towards the bottom left on this graph. 
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Figure B.6: Single attractor (broad initial location) workload. Average number of server crossings per time 

interval vs. the average number of servers required to manage the simulation. Better performance is 

towards the bottom left on this graph. 

 

Figure B.7: Single attractor (broad initial location) workload. Average number of server crossings per time 

interval vs. the average number of servers required to manage the simulation. Better performance is 

towards the bottom left on this graph. 
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Figure B.8: Single attractor (broad initial location) workload. Average number of server crossings per time 

interval versus average special locality score. Better performance is towards the bottom left on this graph. 

 

Figure B.9: Single attractor (broad initial location) workload. Average number of server crossings per time 

interval versus average special locality score. Better performance is towards the bottom left on this graph. 



www.manaraa.com

170 

 

 

 

 

 

 

Figure B.10: Single attractor (broad initial location) workload. Average  number of servers required to 

manage the simulation  versus average special locality score. Better performance is towards the bottom left 

on this graph. 

 

Figure B.11: Single attractor workload. Average number of server crossings per time interval vs. the 

average number of servers required to manage the simulation. Better performance is towards the bottom 

left on this graph. 
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Figure B.12: Single attractor workload. Average number of server crossings per time interval vs. the 

average number of servers required to manage the simulation. Better performance is towards the bottom 

left on this graph. 

 

Figure B.13: Single attractor workload. Average number of server crossings per time interval versus 

average special locality score. Better performance is towards the bottom left on this graph. 
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Figure B.14: Single attractor workload. Average number of server crossings per time interval versus 

average special locality score. Better performance is towards the bottom left on this graph. 

 

Figure B.15: Single attractor workload. Average  number of servers required to manage the simulation  

versus average special locality score. Better performance is towards the bottom left on this graph. 
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Figure B.16: Row-lined attractors workload. Average number of server crossings per time interval vs. the 

average number of servers required to manage the simulation. Better performance is towards the bottom 

left on this graph. 

 

Figure B.17:  Row-lined  attractors workload. Average number of server crossings per time interval vs. the 

average number of servers required to manage the simulation. Better performance is towards the bottom 

left on this graph. 
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Figure B.18:  Row-lined attractors workload. Average number of server crossings per time interval versus 

average special locality score. Better performance is towards the bottom left on this graph. 

 

Figure B.19:  Row-lined attractors workload. Average number of server crossings per time interval versus 

average special locality score. Better performance is towards the bottom left on this graph. 
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Figure B.20: Single attractors workload. Average  number of servers required to manage the simulation  

versus average special locality score. Better performance is towards the bottom left on this graph. 

 

Figure B.21: 2x2 attractors workload. Average number of server crossings per time interval vs. the average 

number of servers required to manage the simulation. Better performance is towards the bottom left on this 

graph. 
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Figure B.22: 2x2 attractors workload. Average number of server crossings per time interval vs. the average 

number of servers required to manage the simulation. Better performance is towards the bottom left on this 

graph. 

 

Figure B.23: 2x2 attractors workload. Average number of server crossings per time interval versus average 

special locality score. Better performance is towards the bottom left on this graph. 
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Figure B.24: 2x2 attractors workload. Average number of server crossings per time interval versus average 

special locality score. Better performance is towards the bottom left on this graph. 

 

Figure B.25: 2x2 attractors workload. Average  number of servers required to manage the simulation  

versus average special locality score. Better performance is towards the bottom left on this graph. 



www.manaraa.com

178 

 

 

 

 

 

 

Figure B.26: Circular motion attractor workload. Average number of server crossings per time interval vs. 

the average number of servers required to manage the simulation. Better performance is towards the bottom 

left on this graph. 

 

Figure B.27:  Circular motion attractor workload. Average number of server crossings per time interval vs. 

the average number of servers required to manage the simulation. Better performance is towards the bottom 

left on this graph. 



www.manaraa.com

179 

 

 

 

 

 

 

Figure B.28:  Circular motion attractor workload. Average number of server crossings per time interval 

versus average special locality score. Better performance is towards the bottom left on this graph. 

 

Figure B.29:  Circular motion attractor workload. Average number of server crossings per time interval 

versus average special locality score. Better performance is towards the bottom left on this graph. 
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Figure B.30:  Circular motion attractor workload. Average  number of servers required to manage the 

simulation  versus average special locality score. Better performance is towards the bottom left on this 

graph. 

 

Figure B.31: Random attractors workload. Average number of server crossings per time interval vs. the 

average number of servers required to manage the simulation. Better performance is towards the bottom 

left on this graph. 
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Figure B.32:  Random attractors workload. Average number of server crossings per time interval vs. the 

average number of servers required to manage the simulation. Better performance is towards the bottom 

left on this graph. 

 

Figure B.33:  Random attractors workload. Average number of server crossings per time interval versus 

average special locality score. Better performance is towards the bottom left on this graph. 
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Figure B.34:  Random attractors workload. Average number of server crossings per time interval versus 

average special locality score. Better performance is towards the bottom left on this graph. 

 

Figure B.35:  Random attractors workload . Average  number of servers required to manage the simulation  

versus average special locality score. Better performance is towards the bottom left on this graph. 
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Appendix C Fixed Grid Virtual World Simulation Workload 

Summary 

Experimental results for the different workloads, using fixed square grid partitioning 

with between 30
2
 and 188

2
 servers are reported in this section. The spatial partitioning 

structure is set at the beginning of each experiment and remains fixed throughout the 

duration with no dynamic adaptation. The performance metrics reported here are 

described in detail in Section 4.5. 

 

 

 

Figure C.1: No Fixed Attractor workload, using fixed square grid partitioning with between 30
2
 and 188

2
 

servers. 
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Figure C.2:  Single attractor (broad initial location) workload, using fixed square grid partitioning with 

between 30
2
 and 188

2
 servers. 

 

Figure C.3:  Single attractor workload, using fixed square grid partitioning with between 30
2
 and 188

2
 

servers. 
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Figure C.4: Row-lined attractors workload, using fixed square grid partitioning with between 30
2
 and 

188
2
 servers. 

 

Figure C.5: 2x2 attractors workload, using fixed square grid partitioning with between 30
2
 and 188

2
 

servers. 
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Figure C.6: Circular motion attractor workload, using fixed square grid partitioning with between 30
2
 

and 188
2
 servers. 

 

Figure C.7: Random attractors workload, using fixed square grid partitioning with between 30
2
 and 188

2
 

servers. 
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